zoukankan      html  css  js  c++  java
  • chess shen_ben建图

    缩边很强,主要是方案数比较难搞,因为两条路不同有且仅当走过的空格不同,那么我们应该消除实际边权为0的影响。

    首先,假设有一个集合全是1点,并且可以互相间接或直接到达,那么一条路径伸到此点集中没必要边权为0的在里面绕,不管怎么绕都是一种情况。缩点解决。

    其次,只有缩点真的可以吗,

    考虑一张简单的图,3到4可以走右下的1点集合,再走到(2,2)的0点最后到达4,也可以直接跳到(2,2)的0点。但因为走过的0点一样,其实算一个方案。

    这时就能发现漏洞了,因为缩完点的点作为了一个路径上独立的点来区分了走过它和不走过它的路径,这和题意不符,我们只考虑0点的对路径区分的独立性。

    想办法,既然是1点的锅,我们就要让他负责。他必然不能出现在路径上,所以考虑把他删掉,然而原来联通的路径,例如0点到1点再到0点,应该提前预处理出0点到0点。

    注意不能将4和1合并,应该把4当成0点建边以确保终点联通的正确性,最后最短路-1即可。

      1 #include<bits/stdc++.h>
      2 #define MAXN 2510
      3 #define INF (1ll<<60)
      4 #define ll long long
      5 using namespace std;
      6 struct rr{
      7     int nt,to;
      8     ll w;
      9 }bl[MAXN*MAXN];int hd[MAXN],itot;
     10 void add(int x,int y,int z){
     11     for(int i=hd[x];i;i=bl[i].nt)
     12         if(bl[i].to==y)return ;
     13     bl[++itot].to=y;
     14     bl[itot].w=z;
     15     bl[itot].nt=hd[x];
     16     hd[x]=itot;
     17 }
     18 int st,en;
     19 int jz[60][60];
     20 int fat[MAXN];
     21 inline int find(int x){
     22     if(!fat[x]||fat[x]==x)return x;
     23     return fat[x]=find(fat[x]);
     24 }
     25 int n,m;
     26 inline int zh(int i,int j){return (i-1)*m+j; }
     27 vector<vector<int > >td(MAXN);
     28 ll dist[MAXN],cnt[MAXN];
     29 bool vis[MAXN];
     30 queue<int >dd;
     31 bool pd[MAXN];
     32 void spfa(){
     33     for(int i=1;i<=n*m;++i)dist[i]=INF;
     34     dd.push(st);
     35     vis[st]=1;dist[st]=0;cnt[st]=1;
     36     while(!dd.empty()){
     37         int ltop=dd.front();dd.pop();
     38         vis[ltop]=0;
     39         for(int i=hd[ltop];i;i=bl[i].nt)
     40             if(dist[bl[i].to]>dist[ltop]+bl[i].w){
     41                 dist[bl[i].to]=dist[ltop]+bl[i].w;
     42                 cnt[bl[i].to]=cnt[ltop];
     43                 if(!vis[bl[i].to]){
     44                     vis[bl[i].to]=1;
     45                     dd.push(bl[i].to);
     46                 }
     47             }
     48             else if(dist[bl[i].to]==dist[ltop]+bl[i].w)
     49                 cnt[bl[i].to]+=cnt[ltop];    
     50     }
     51 }
     52 int fx[8][2];
     53 int main(){
     54     //freopen("da.in","r",stdin);
     55     //freopen("hh.out","w",stdout);
     56     scanf("%d%d",&n,&m);
     57     
     58     fx[0][0]=2;fx[0][1]=1;
     59     fx[1][0]=2;fx[1][1]=-1;
     60     fx[2][0]=-2;fx[2][1]=1;
     61     fx[3][0]=-2;fx[3][1]=-1;
     62     
     63     fx[4][0]=1;fx[4][1]=2;
     64     fx[5][0]=-1;fx[5][1]=2;
     65     fx[6][0]=1;fx[6][1]=-2;
     66     fx[7][0]=-1;fx[7][1]=-2;
     67     
     68     for(int i=1;i<=n;++i)
     69         for(int j=1;j<=m;++j){
     70             scanf("%d",&jz[i][j]);
     71             if(jz[i][j]==3){
     72                 st=zh(i,j);jz[i][j]=0;
     73             }
     74             else if(jz[i][j]==4){
     75                 en=zh(i,j);jz[i][j]=0;
     76             }
     77             if(jz[i][j]==1){
     78                 int ti,tj;
     79                 for(int k=0;k<8;++k){
     80                     ti=i+fx[k][0];tj=j+fx[k][1];
     81                     if(ti<1||ti>n)continue;
     82                     if(tj<1||tj>m)continue;
     83                     if(jz[ti][tj]==1)
     84                         fat[find(zh(ti,tj))]=find(zh(i,j));
     85                 }
     86             }
     87         }
     88     for(int i=1;i<=n;++i)
     89         for(int j=1;j<=m;++j){
     90             int ti,tj;
     91             for(int k=0;k<8;++k){
     92                 ti=i+fx[k][0];tj=j+fx[k][1];
     93                 if(ti<1||ti>n)continue;
     94                 if(tj<1||tj>m)continue;
     95                 if(!jz[i][j]&&!jz[ti][tj])
     96                     add(find(zh(i,j)),find(zh(ti,tj)),1);
     97                 if(jz[i][j]==1&&!jz[ti][tj])
     98                     td[find(zh(i,j))].push_back(find(zh(ti,tj)));
     99             }
    100         }
    101     /*for(int i=1;i<=n;++i){
    102         for(int j=1;j<=m;++j)
    103             printf("%3d",find(zh(i,j)));
    104         cout<<endl;        
    105     }*/
    106     for(int i=1;i<=n*m;++i)
    107         if(td[i].size())
    108             for(int k=0;k<td[i].size();++k){
    109                 //cout<<td[i][k]<<endl;
    110                 for(int s=k+1;s<td[i].size();++s){
    111                     add(td[i][k],td[i][s],1);
    112                     add(td[i][s],td[i][k],1);
    113                 }    
    114             }
    115     /*for(int i=1;i<=n*m;++i){
    116         for(int j=hd[i];j;j=bl[j].nt)
    117             cout<<i<<" "<<bl[j].to<<" "<<bl[j].w<<endl;
    118     }*/
    119     st=find(st);
    120     en=find(en);
    121     spfa();
    122     if(dist[en]==INF)puts("-1");
    123     else printf("%lld
    %lld
    ",dist[en]-1,cnt[en]);
    124 }
    View Code

     


     

  • 相关阅读:
    day7 面向对象 静态方法 类方法 属性方法 类的特殊成员方法 元类 反射 异常处理
    day6 面向对象 封装 继承 多态 类与实例在内存中的关系 经典类和新式类
    day5 time datetime random os sys shutil json pickle shelve xml configparser hashlib subprocess logging re正则 python计算器
    kafka常用操作命令
    linux基础
    django学习1——初识web应用程序
    mysql数据库(三)——pymysql模块
    mysql数据库(二)——表的查询
    mysql数据库(一)
    Python常用模块——re模块
  • 原文地址:https://www.cnblogs.com/2018hzoicyf/p/11354492.html
Copyright © 2011-2022 走看看