from pandas import read_csv
from pandas.plotting import scatter_matrix
from matplotlib import pyplot
from sklearn.model_selection import train_test_split
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
from sklearn.metrics import accuracy_score
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
# 读取数据
filename = 'iris.data.csv'
names = ['separ-length', 'separ-width', 'petal-length', 'petal-width', 'class']
dataset = read_csv(filename, names=names)
# print(dataset)
# print(dataset.head(10))
# dataset = read_csv('iris.data.csv')
# print(dataset.shape)
# print(dataset.head(10))
# print('数据维度: 行 %s,列 %s'% dataset.shape)
# print(dataset.describe()) #数据描述
# print(dataset.groupby('class').size()) #数据分类
# print(dataset.groupby('separ-width').size())
# dataset.plot(kind='box', subplots=True, layout=(2, 2), sharex=False, sharey=False) #箱线图
# pyplot.show()
# dataset.hist() #直方图
# pyplot.show()
# scatter_matrix(dataset) #散点图
# pyplot.show()
array = dataset.values #数据集拆分
X = array[:, :4]
Y = array[:, 4]
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=7)
# print(X_train.shape)
明天补充