zoukankan      html  css  js  c++  java
  • ML-first project

    from pandas import read_csv
    from pandas.plotting import scatter_matrix
    from matplotlib import pyplot
    from sklearn.model_selection import train_test_split
    from sklearn.model_selection import KFold
    from sklearn.model_selection import cross_val_score
    from sklearn.metrics import confusion_matrix
    from sklearn.metrics import classification_report
    from sklearn.metrics import accuracy_score
    from sklearn.neighbors import KNeighborsClassifier
    from sklearn.linear_model import LogisticRegression
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
    from sklearn.naive_bayes import GaussianNB
    from sklearn.svm import SVC
    # 读取数据
    filename = 'iris.data.csv'
    names = ['separ-length', 'separ-width', 'petal-length', 'petal-width', 'class']
    dataset = read_csv(filename, names=names)
    # print(dataset)
    # print(dataset.head(10))
    
    # dataset = read_csv('iris.data.csv')
    # print(dataset.shape)
    # print(dataset.head(10))
    # print('数据维度: 行 %s,列 %s'% dataset.shape)
    # print(dataset.describe())                         #数据描述
    # print(dataset.groupby('class').size())                   #数据分类
    # print(dataset.groupby('separ-width').size())
    
    # dataset.plot(kind='box', subplots=True, layout=(2, 2), sharex=False, sharey=False)           #箱线图
    # pyplot.show()
    
    # dataset.hist()                   #直方图
    # pyplot.show()
    
    # scatter_matrix(dataset)              #散点图
    # pyplot.show()
    
    array = dataset.values                #数据集拆分
    X = array[:, :4]
    Y = array[:, 4]
    X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=7)
    # print(X_train.shape)

    明天补充
  • 相关阅读:
    Python-函数
    Python-运数符
    Python-条件判断
    Python-变量
    移动端页面布局的那些事儿
    关于ie7下display:inline-block;不支持的解决方案
    SuperSlidev2.1 轮播图片和无缝滚动
    解决xmapp中Apache端口号占用问题
    npm 常用命令详解
    python函数总结
  • 原文地址:https://www.cnblogs.com/2019-02-11/p/10633554.html
Copyright © 2011-2022 走看看