zoukankan      html  css  js  c++  java
  • 漫谈LiteOS-LiteOS SDK支持RISC-V架构

    【摘要】 本文首先对RISC-V的架构做了简要的介绍,在此基础上实现了LiteOS在RISC-V架构上的适配过程的具体步骤,希望对你有所帮助。

    1 RISC-V架构简介

    RISC-V是一个基于精简指令集(RISC)原则的开源指令集架构(ISA)。

    与大多数指令集相比,RISC-V指令集可以自由地用于任何目的,允许任何人设计、制造和销售RISC-V芯片和软件而不必支付给任何公司专利费。RISC-V指令集的设计考虑了小型、快速、低功耗的现实情况来实做,但并没有对特定的微架构做过度的设计。

    RISC-V的Spec文档可以在RISC-C官网https://riscv.org/specifications/ 上下载。主要看riscv-privileged.pdf和riscv-spec.pdf。

    主要精读的内容包括:

    RV32ICM Instruction Set

        I:RV32I Base Integer Instruction Set

        C:Standard Extension for Compressed Instructions

        M:Standard Extension for Integer Multiplication and Division

    Privilege Levels

    Control and Status Registers (CSRs)

    Machine-Level ISA

    在了解通用的RV32架构之后,由于RV32是开源的ISA架构,所以实际芯片都会在此基础上做一些定制化,因此需要再读一下芯片手册,LiteOS的RISC-V架构支持使用的芯片是GD32VF103,请下载GD32VF103 的Spec进行阅览。

    2 LiteOS支持一种处理器

    RTOS支持一种新的处理器架构,最主要的修改有以下几个方面:

    1.启动汇编的适配

    2.适配系统调度汇编

    3.Tick的适配

    4.根据芯片设置系统相关参数

    5.适配中断管理模块

    6.编译链接脚本的调整

    那么,对应到LiteOS,主要修改的目录和文件是:

    LiteOS_Labiot_linkosliteosarch iscvsrc中

    los_dispatch.S

    los_hw.c

    los_hw_tick.c

    los_hwi.c

    和对应芯片target目录下的start.S启动汇编以及ld链接脚本。

    步骤如下:

    1. start.S

    A. 和RISC-V的异常中断处理密切相关,注意向量表的对齐

      vector_base:
            j _start
            .align     2
            .word     0
            .word     0
            .word     osInterrupt #eclic_msip_handler
            .word     0
            .word     0
            .word    0
            .word    osInterrupt #eclic_mtip_handler

    B. 设置中断,异常等的入口地址

    _start0800:
        
            /* Set the the NMI base to share with mtvec by setting CSR_MMISC_CTL */
            li t0, 0x200
            csrs CSR_MMISC_CTL, t0
        
            /* Intial the mtvt*/
            la t0, vector_base
            csrw CSR_MTVT, t0
        
            /* Intial the mtvt2 and enable it*/
            la t0, irq_entry
            csrw CSR_MTVT2, t0
            csrs CSR_MTVT2, 0x1
        
            /* Intial the CSR MTVEC for the Trap ane NMI base addr*/
            la t0, trap_entry
            csrw CSR_MTVEC, t0

    C.设置gp,sp,初始化data和bss section,然后跳转到main函数

        .option push
            .option norelax
            la gp, __global_pointer$
            .option pop
            la sp, _sp
        
            /* Load data section */
            la a0, _data_lma
            la a1, _data
            la a2, _edata
            bgeu a1, a2, 2f
        1:
            lw t0, (a0)
            sw t0, (a1)
            addi a0, a0, 4
            addi a1, a1, 4
            bltu a1, a2, 1b
        2:
            /* Clear bss section */
            la a0, __bss_start
            la a1, _end
            bgeu a0, a1, 2f
        1:
            sw zero, (a0)
            addi a0, a0, 4
            bltu a0, a1, 1b

    2. 适配系统调度汇编(los_dispatch.s),主要修改函数LOS_StartToRun、LOS_IntLock、LOS_IntUnLock、TaskSwitch等;

    任务栈的设计,在osTskStackInit中针对RISC-V的寄存器的定义,做出context的设计:

        pstContext->ra = (UINT32)osTaskExit;
        pstContext->sp = 0x02020202L;
        pstContext->gp = 0x03030303L;
        pstContext->tp = 0x04040404L;
        pstContext->t0 = 0x05050505L;
        pstContext->t1 = 0x06060606L;
        pstContext->t2 = 0x07070707L;
        pstContext->s0 = 0x08080808L;
        pstContext->s1 = 0x09090909L;
        pstContext->a0 = pstTaskCB->uwTaskID;         //a0 first argument
        pstContext->a1 = 0x11111111L;
        pstContext->a2 = 0x12121212L;
        pstContext->a3 = 0x13131313L;
        pstContext->a4 = 0x14141414L;
        pstContext->a5 = 0x15151515L;
        pstContext->a6 = 0x16161616L;
        pstContext->a7 = 0x17171717L;
        pstContext->s2 = 0x18181818L;
        pstContext->s3 = 0x19191919L;
        pstContext->s4 = 0x20202020L;
        pstContext->s5 = 0x21212121L;
        pstContext->s6 = 0x22222222L;
        pstContext->s7 = 0x23232323L;
        pstContext->s8 = 0x24242424L;
        pstContext->s9 = 0x25252525L;
        pstContext->s10 = 0x26262626L;
        pstContext->s11 = 0x27272727L;
        pstContext->t3 = 0x28282828L;
        pstContext->t4 = 0x29292929L;
        pstContext->t5 = 0x30303030L;
        pstContext->t6 = 0x31313131L;
        pstContext->mepc =(UINT32)osTaskEntry;

    LOS_IntLock的实现:

      LOS_IntLock:
            csrr    a0, mstatus
            li      t0, 0x08
            csrrc   zero, mstatus, t0
            ret

    LOS_IntUnLock的实现:

    LOS_IntUnLock:
            csrr    a0, mstatus
            li      t0, 0x08
            csrrs   zero, mstatus, t0
            ret

    TaskSwitch的实现:

    TaskSwitch:
            la      t0, g_stLosTask
            lw      t1, 0(t0)
            csrr    t2, mscratch
            sw      t2, 0(t1)
        
            //Clear the task running bit of pstRunTask.
            la      t0, g_stLosTask
            lw      t1, (t0)
            lb      t2, 0x4(t1)
            andi    t2, t2, OS_TASK_STATUS_NOT_RUNNING
            sb      t2, 0x4(t1)
        
            //copy pstNewTask into pstRunTask
            la      t0, g_stLosTask
            lw      t1, 0x4(t0)
            sw      t1, 0x0(t0)
        
            //set the task running bit=1
            lh      t2, 0x4(t1)
            ori     t2, t2, OS_TASK_STATUS_RUNNING
            sh      t2, 0x4(t1)
        
            //retireve stack pointer
            lw      sp, (t1)
        
            //retrieve the address at which exception happened
            lw      t0, 31 * 4(sp)
            csrw    mepc, t0
        
            li     t0, 0x1800
            csrs   mstatus, t0
        
            //retrieve the registers
            lw      ra, 0 * 4(sp)
        
            lw      t0, 4 * 4(sp)
            lw      t1, 5 * 4(sp)
            lw      t2, 6 * 4(sp)
            lw      s0, 7 * 4(sp)
            lw      s1, 8 * 4(sp)
            lw      a0, 9 * 4(sp)
            lw      a1, 10 * 4(sp)
            lw      a2, 11 * 4(sp)
            lw      a3, 12 * 4(sp)
            lw      a4, 13 * 4(sp)
            lw      a5, 14 * 4(sp)
            lw      a6, 15 * 4(sp)
            lw      a7, 16 * 4(sp)
            lw      s2, 17 * 4(sp)
            lw      s3, 18 * 4(sp)
            lw      s4, 19 * 4(sp)
            lw      s5, 20 * 4(sp)
            lw      s6, 21 * 4(sp)
            lw      s7, 22 * 4(sp)
            lw      s8, 23 * 4(sp)
            lw      s9, 24 * 4(sp)
            lw      s10, 25 * 4(sp)
            lw      s11, 26 * 4(sp)
            lw      t3, 27 * 4(sp)
            lw      t4, 28 * 4(sp)
            lw      t5, 29 * 4(sp)
            lw      t6, 30 * 4(sp)
        
            addi    sp, sp, 4 * 32
        
            mret

    3. Tick的适配

    osTickStart的启动:

    MTIMECMP和MTIME寄存器的设定,TIMER中断的使能,TIMER中断处理函数的注册

     LITE_OS_SEC_TEXT_INIT UINT32 osTickStart(VOID)
        {
            UINT32 uwRet;
        
            g_uwCyclesPerTick = OS_SYS_CLOCK / LOSCFG_BASE_CORE_TICK_PER_SECOND;
            g_ullTickCount = 0;
        
            *(UINT64 *)(TIMER_CTRL_ADDR + TIMER_MTIMECMP) = OS_SYS_CLOCK / LOSCFG_BASE_CORE_TICK_PER_SECOND / 4;
        
            *(UINT64 *)(TIMER_CTRL_ADDR + TIMER_MTIME) = 0;
            eclic_irq_enable(CLIC_INT_TMR, 1, 1);
            LOS_HwiCreate(CLIC_INT_TMR, 3, 0, eclic_mtip_handler, 0);
        
            g_bSysTickStart = TRUE;
        
            return LOS_OK;
        }

    4. 根据芯片设置系统相关参数(时钟频率,tick中断配置,los_config.h系统参数配置(内存池大小、信号量、队列、互斥锁,软件定时器数量等));

    根据实际开发板的资源和实际使用需求,配置target_config.h的参数和选项。

    5. 适配中断管理模块,LiteOS的中断向量表由m_pstHwiForm[OS_VECTOR_CNT]数组管理,需要根据芯片配置中断使能,重定向等;

    A.在los_hwi.c和los_hwi.h中根据实际芯片的中断向量数目和驱动做一些调整

    B.在entry.S中设计irq_entry的处理,需要注意的是需要单独在irq stack中处理中断嵌套:

     irq_entry: // -------------> This label will be set to MTVT2 register
            // Allocate the stack space
            
            SAVE_CONTEXT// Save 16 regs
            
            //------This special CSR read operation, which is actually use mcause as operand to directly store it to memory
            csrrwi  x0, CSR_PUSHMCAUSE, 17
            //------This special CSR read operation, which is actually use mepc as operand to directly store it to memory
            csrrwi  x0, CSR_PUSHMEPC, 18
            //------This special CSR read operation, which is actually use Msubm as operand to directly store it to memory
            csrrwi  x0, CSR_PUSHMSUBM, 19
            
            la t0, g_int_cnt
            lw t1, 0(t0)
            addi t1, t1, 1
            sw t1, 0(t0)
            li t2, 1
            bgtu t1,t2,service_loop
            
            csrw mscratch, sp
            la sp, __irq_stack_top

    service_loop:

    //------This special CSR read/write operation, which is actually Claim the CLIC to find its pending highest
            // ID, if the ID is not 0, then automatically enable the mstatus.MIE, and jump to its vector-entry-label, and
            // update the link register 
            csrrw ra, CSR_JALMNXTI, ra 
       
            //RESTORE_CONTEXT_EXCPT_X5
            
            la t0, g_int_cnt
            lw t1, 0(t0)
            addi t1, t1, -1
            sw t1, 0(t0)
            bnez t1, _rfi
            
            csrr sp, mscratch
            
            DISABLE_MIE # Disable interrupts
            
            LOAD x5,  19*REGBYTES(sp)
            csrw CSR_MSUBM, x5
            LOAD x5,  18*REGBYTES(sp)
            csrw CSR_MEPC, x5
            LOAD x5,  17*REGBYTES(sp)
            csrw CSR_MCAUSE, x5
            
            la t0, g_usLosTaskLock
            lw t1, 0(t0)
            bnez t1, _rfi
            
            la      t0, g_stLosTask
            lw      t1, 0x4(t0)
            lw      t2, 0x0(t0)
            beq  t1, t2, _rfi
            
            RESTORE_CONTEXT
            
            push_reg
            csrr t0, mepc
            sw t0, 31*4(sp)
            csrw mscratch, sp
            j TaskSwitch

    _rfi:

    RESTORE_CONTEXT
            // Return to regular code
            mret

    6. 编译链接脚本的调整

    几个关键的设置:

    irq stack内存区域:

     __stack_size = DEFINED(__stack_size) ? __stack_size : 2K;
            __irq_stack_size = DEFINED(__irq_stack_size) ? __irq_stack_size : 2K;
            __heap_size = DEFINED(__heap_size) ? __heap_size : 0xc00;

    gp初始值的设定:gp用于代码的优化,因为请合理选择__global_pointer的初值:

       PROVIDE( __global_pointer$ = . + 0x800);

    堆栈的设定:

      .stack : ALIGN(0x10)
        {
            . += __stack_size;  
            PROVIDE( _sp = . ); 
            . = ALIGN(0x10);
            PROVIDE( __irq_stack_bottom = . );
            . += __irq_stack_size;
            PROVIDE( __irq_stack_top = . );
        } >ram AT>ram 
        
        .heap : ALIGN(0x10)
        {
            PROVIDE( __los_heap_addr_start__ = . );
            . = __heap_size;
            . = __heap_size == 0 ? 0 : ORIGIN(ram) + LENGTH(ram);
            PROVIDE( __los_heap_addr_end__ = . );
            PROVIDE( _heap_end = . );
        } >ram AT>ram

    主要的步骤已经整体讲述了,顺利移植的主要前提条件是对RISC-V处理器架构的全面理解和LiteOS任务调度的设计,所以再次提醒精读riscv-privileged.pdf和riscv-spec.pdf的相关章节。在移植过程中,会遇到很多问题,建议使用IoT Studio的开发调试环境,方便的进行汇编级的单步调试,另外把串口驱动和printf打印调通,也是一种较重要的调试手段。

    作者:星辰27

  • 相关阅读:
    C++结构体成员列表初始化
    hdu-3790-最短路径问题(Dijkstra)
    hdu--1878--欧拉回路(并查集判断连通,欧拉回路模板题)
    nyoj-1278-Prototypes analyze(二叉排序树模板)
    hdu-5183-Negative and Positive (NP)(hash模板)
    nyoj-130-相同的雪花(hash)
    详细介绍C++STL:unordered_map
    NYOJ-626-intersection set(二分查找)
    hdoj-2141-Can you find it?(二分查找)
    HDU-1232-畅通工程(并查集)
  • 原文地址:https://www.cnblogs.com/2020-zhy-jzoj/p/13164967.html
Copyright © 2011-2022 走看看