zoukankan      html  css  js  c++  java
  • orocos_kdl学习(二):KDL Tree与机器人运动学

      KDL(Kinematics and Dynamics Library)中定义了一个树来代表机器人的运动学和动力学参数,ROS中的kdl_parser提供了工具能将机器人描述文件URDF转换为KDL tree.

      Kinematic Trees: 链或树形结构。已经有多种方式来定义机构的运动学结构,KDL使用图论中的术语来定义:

    • A closed-loop mechanism is a graph, 闭链机构是一幅图
    • an open-loop mechanism is a tree,  开链机构是一棵树
    • an unbranched tree is a chain. 没有分支的树是一个运动链

      KDL Chain和KDL Tree都由最基本的KDL Segments元素串接而成,Segment可以理解为机构运动链上的一个运动部件。如下图所示KDL Segment包含关节KDL Joint 以及部件的质量/惯性属性KDL RigidBodyInertia,并且定义了一个参考坐标系Freference和末端坐标系Ftip

    KDL segment

      末端到关节坐标系的转换由Ttip描述。在一个运动链或树中,子部件会被添加到父部件的末端,因此上一个部件的Ftip就是下一个部件的参考坐标系Freference (tip frame of parent = reference frame of the child). 通常Fjoint和Freference是重合的,但是也可以存在偏移。

    KDL chain

    KDL chain

    KDL tree

    KDL tree

      KDL中的定义与URDF中的定义基本是一样的:

      也可以参考MATLAB Robotics System Toolbox中的对Rigid Body Tree Robot Model的描述:

      

     Python中创建KDL tree 

       参考pykdl_utils,pykdl_utils中包含了kdl_parser.py(用于解析URDF文件并将其转换为KDL tree或chain),kdl_kinematics.py(封装了KDL kinematics的一系列函数,使得用Python调用更方便)等实用程序。下面先安装urdfdom_py(Python implementation of the URDF parser):

    sudo apt-get install ros-indigo-urdfdom-py

      然后在github上下载pykdl_utils的源代码,使用catkin_make进行编译。

     convert URDF objects into PyKDL.Tree 

      首先通过urdf_parser_py来解析URDF文件,有下面几种使用方式:通过xml字符串解析、xml文件解析,以及从ROS 参数服务器获取robot_description字符串信息。

    #! /usr/bin/env python
    
    # Load the urdf_parser_py manifest, you use your own package
    # name on the condition but in this case, you need to depend on
    # urdf_parser_py.
    import roslib; roslib.load_manifest('urdfdom_py')
    import rospy
    
    # Import the module
    
    from urdf_parser_py.urdf import URDF
    
    # 1. Parse a string containing the robot description in URDF.
    # Pro: no need to have a roscore running.
    # Cons: n/a
    # Note: it is rare to receive the robot model as a string.
    robot = URDF.from_xml_string("<robot name='myrobot'></robot>")
    
    # - OR -
    
    # 2. Load the module from a file.
    # Pro: no need to have a roscore running.
    # Cons: using hardcoded file location is not portable.
    robot = URDF.from_xml_file()
    
    # - OR -
    
    # 3. Load the module from the parameter server.
    # Pro: automatic, no arguments are needed, consistent
    #      with other ROS nodes.
    # Cons: need roscore to be running and the parameter to
    #      to be set beforehand (through a roslaunch file for
    #      instance).
    robot = URDF.from_parameter_server()
    
    # Print the robot
    print(robot)

      下面编写一个简单的robot.urdf文件,创建一个连杆机器人。joint1为与基座link0相连的基关节,joint3为末端关节。

    <robot name="test_robot">
        <link name="link0" />
        <link name="link1" />
        <link name="link2" />
        <link name="link3" />
    
        <joint name="joint1" type="continuous">
            <parent link="link0"/>
            <child link="link1"/>
            <origin xyz="0 0 0" rpy="0 0 0" />
            <axis xyz="1 0 0" />
        </joint>
    
        <joint name="joint2" type="continuous">
            <parent link="link1"/>
            <child link="link2"/>
            <origin xyz="0 0 1" rpy="0 0 0" />
            <axis xyz="1 0 0" />
        </joint>
    
        <joint name="joint3" type="continuous">
            <parent link="link2"/>
            <child link="link3"/>
            <origin xyz="0 0 1" rpy="0 0 0" />
            <axis xyz="1 0 0" />
        </joint>
    
    </robot>
    View Code

      pykdl_utils中还提供了下列几个指令用于测试分析我们的机器人,如果ROS参数服务器中加载了/robot_description则命令行中的xml文件可以省略:

    rosrun pykdl_utils kdl_parser.py [robot.xml]
    rosrun pykdl_utils kdl_kinematics.py [robot.xml]
    rosrun pykdl_utils joint_kinematics.py [robot.xml]

      对于我们上面编写的robot.urdf文件,可以用下面命令进行测试:

    rosrun pykdl_utils kdl_parser.py `rospack find test`/robot.urdf

      下面是KDL运动学一些基本的用法,相关函数可以参考:KDLKinematics Class Reference

    #! /usr/bin/env python
    
    # Import the module
    from urdf_parser_py.urdf import URDF
    from pykdl_utils.kdl_parser import kdl_tree_from_urdf_model
    from pykdl_utils.kdl_kinematics import KDLKinematics
    
    robot = URDF.from_xml_file("/home/sc/catkin_ws/src/test/robot.urdf")
    
    tree = kdl_tree_from_urdf_model(robot)
    print tree.getNrOfSegments()
    
    chain = tree.getChain("link0", "link3")
    print chain.getNrOfJoints()
    
    # forwawrd kinematics
    kdl_kin = KDLKinematics(robot, "link0", "link3")
    q = [0, 0, 0]
    pose = kdl_kin.forward(q) # forward kinematics (returns homogeneous 4x4 matrix)
    print pose 
    
    q_ik = kdl_kin.inverse(pose) # inverse kinematics
    print q_ik
    
    if q_ik is not None:
        pose_sol = kdl_kin.forward(q_ik) # should equal pose
    print pose_sol
    
    J = kdl_kin.jacobian(q)
    print 'J:', J

      我们将URDF文件转换为KDL tree以后可以获取机构运动链/树的相关信息。KDLKinematics的构造函数根据urdf文件,以及机器人的基座base_link和末端end_link就可以创建出运动链:

    def pykdl_utils.kdl_kinematics.KDLKinematics.__init__    (self, urdf, base_link, end_link, kdl_tree = None)        
    
    # Parameters:
    # urdf    URDF object of robot.
    # base_link    Name of the root link of the kinematic chain.
    # end_link    Name of the end link of the kinematic chain.
    # kdl_tree    Optional KDL.Tree object to use. If None, one will be generated from the URDF.

       正运动学的计算函数forward参数就是关节角度;逆运动学计算函数inverse的参数为末端位姿矩阵,因为是数值解,还可以指定初始值,以及关节角的范围。

    # Inverse kinematics for a given pose, returning the joint angles required to obtain the target pose.
    def pykdl_utils.kdl_kinematics.KDLKinematics.inverse(self, pose, q_guess = None, min_joints = None, max_joints = None )  
    # Parameters: # pose Pose-like object represeting the target pose of the end effector. # q_guess List of joint angles to seed the IK search. # min_joints List of joint angles to lower bound the angles on the IK search. If None, the safety limits are used. # max_joints List of joint angles to upper bound the angles on the IK search. If None, the safety limits are used.

     C++中创建KDL tree 

      为了使用KDL parser需要在package.xml中添加相关依赖项:

      <package>
        ...
        <build_depend package="kdl_parser" />
        ...
        <run_depend package="kdl_parser" />
        ...
      </package>

      另外还需要在C++程序中加入相关的头文件:

    #include <kdl_parser/kdl_parser.hpp>

      下面有多种从urdf创建KDL tree的方式:

      1. From a file

       KDL::Tree my_tree;
       if (!kdl_parser::treeFromFile("filename", my_tree)){
          ROS_ERROR("Failed to construct kdl tree");
          return false;
       }

      2. From the parameter server

       KDL::Tree my_tree;
       ros::NodeHandle node;
       std::string robot_desc_string;
       node.param("robot_description", robot_desc_string, std::string());
       if (!kdl_parser::treeFromString(robot_desc_string, my_tree)){
          ROS_ERROR("Failed to construct kdl tree");
          return false;
       }

      3. From an xml element

       KDL::Tree my_tree;
       TiXmlDocument xml_doc;
       xml_doc.Parse(xml_string.c_str());
       xml_root = xml_doc.FirstChildElement("robot");
       if (!xml_root){
          ROS_ERROR("Failed to get robot from xml document");
          return false;
       }
       if (!kdl_parser::treeFromXml(xml_root, my_tree)){
          ROS_ERROR("Failed to construct kdl tree");
          return false;
       }

      4. From a URDF model

       KDL::Tree my_tree;
       urdf::Model my_model;
       if (!my_model.initXml(....)){
          ROS_ERROR("Failed to parse urdf robot model");
          return false;
       }
       if (!kdl_parser::treeFromUrdfModel(my_model, my_tree)){
          ROS_ERROR("Failed to construct kdl tree");
          return false;
       }

    参考:

    kdl_parser

    urdfdom_py

    Start using the KDL parser

    从URDF到KDL(C++&Python)

    PyKDL 1.0.99 documentation

    Solidworks 2016中导出URDF文件

    Robotics System Toolbox—Rigid Body Tree Robot Model

  • 相关阅读:
    Linq to Sql学习总结1
    SQL相关
    C#各种小知识点总结
    Ext.Net学习笔记
    ASP.NET MVC3入门学习总结
    leetcode-剑指67-OK
    leetcode-剑指44-OK
    leetcode-剑指51-OK
    leetcode-剑指32-III-OK
    leetcode-剑指49-OK
  • 原文地址:https://www.cnblogs.com/21207-iHome/p/8316030.html
Copyright © 2011-2022 走看看