zoukankan      html  css  js  c++  java
  • LA 3026 Period KMP失配函数的应用

    For each prefix of a given string S with N characters (each character has an ASCII code between 97 and 126, inclusive), we want to know whether the prefix is a periodic string. That is, for each i (2 ≤ i ≤ N) we want to know the largest K > 1 (if there is one) such that the prefix of S with length i can be written as AK, that is A concatenated K times, for some string A. Of course, we also want to know the period K.

    Input 

    The input file consists of several test cases. Each test case consists of two lines. The first one contains N (2 ≤ N ≤ 1 000 000) � the size of the string S. The second line contains the string S. The input file ends with a line, having the number zero on it.

    Output 

    For each test case, output �Test case #� and the consecutive test case number on a single line; then, for each prefix with length i that has a period K > 1, output the prefix size i and the period K separated by a single space; the prefix sizes must be in increasing order. Print a blank line after each test case.

    Sample Input 

    3
    aaa
    12
    aabaabaabaab
    0
    

    Sample Output 

    Test case #1
    2 2
    3 3
    
    Test case #2
    2 2
    6 2
    9 3
    12 4
    -------------------------------------------------------------------

    如果前i个字符组成一个周期,则循环节为i-f[i]。

    -------------------------------------------------------------------

    #include <iostream>
    #include <cstring>
    #include <cstdio>
    
    using namespace std;
    
    int f[1111111];
    
    void getfail(char* P,int *f)
    {
        int m=strlen(P);
        f[0]=f[1]=0;
        for (int i=1;i<m;i++)
        {
            int j=f[i];
            while (j&&P[i]!=P[j]) j=f[j];
            f[i+1]=(P[i]==P[j])?j+1:0;
        }
    }
    
    void find(char* T,char* P,int* f)
    {
        int n=strlen(T),m=strlen(P);
        getfail(P,f);
        int j=0;
        for (int i=0;i<n;i++)
        {
            while (j&&P[j]!=T[i]) j=f[j];
            if (P[j]==T[i]) j++;
            if (j==m) printf("%d\n",i-m+1);
        }
    }
    
    int main()
    {
        int n;
        char str[1111111];
        int cnt=0;
        while (~scanf("%d",&n))
        {
            if (n==0) break;
            cnt++;
            scanf("%s",str);
            getfail(str,f);
            printf("Test case #%d\n",cnt);
            for (int i=2;i<=n;i++)
            {
                if (f[i]>0&&i%(i-f[i])==0) printf("%d %d\n",i,i/(i-f[i]));
            }
            printf("\n");
        }
        return 0;
    }
    




  • 相关阅读:
    2017.11.2 JavaWeb----第六章 Servlet技术
    2017.11.1 微型计算机原理与接口技术-----第七章 中断系统与8237A DMA控制器
    2017.10.31 微型计算机组成原理与接口技术------- 第六章 存储器
    2017.10.30 软件工程------ 软件测试
    选择排序
    快速排序(基础版)
    [经验]java 高级面试解析
    [经验]java 高级面试
    链表翻转的图文讲解(递归与迭代两种实现)yet
    手把手教你如何自定义DAO框架(重量级干货)(yet)
  • 原文地址:https://www.cnblogs.com/cyendra/p/3038414.html
Copyright © 2011-2022 走看看