zoukankan      html  css  js  c++  java
  • Python之逻辑回归模型来预测

    建立一个逻辑回归模型来预测一个学生是否被录取。

    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import os
    path='data'+os.sep+'Logireg_data.txt'
    pdData=pd.read_csv(path,header=None,names=['Exam1','Exam2','Admitted'])
    pdData.head()
    print(pdData.head())
    print(pdData.shape)
    positive=pdData[pdData['Admitted']==1]#定义正
    nagative=pdData[pdData['Admitted']==0]#定义负
    fig,ax=plt.subplots(figsize=(10,5))
    ax.scatter(positive['Exam1'],positive['Exam2'],s=30,c='b',marker='o',label='Admitted')
    ax.scatter(nagative['Exam1'],nagative['Exam2'],s=30,c='r',marker='x',label='not Admitted')
    ax.legend()
    ax.set_xlabel('Exam 1 score')
    ax.set_ylabel('Exam 2 score')
    plt.show()#画图
    ##实现算法 the logistics regression 目标建立一个分类器 设置阈值来判断录取结果
    ##sigmoid 函数
    def sigmoid(z):
        return 1/(1+np.exp(-z))
    #画图
    nums=np.arange(-10,10,step=1)
    fig,ax=plt.subplots(figsize=(12,4))
    ax.plot(nums,sigmoid(nums),'r')#画图定义
    plt.show()
    #按照理论实现预测函数
    def model(X,theta):
        return sigmoid(np.dot(X,theta.T))
    
    pdData.insert(0,'ones',1)#插入一列
    orig_data=pdData.as_matrix()
    cols=orig_data.shape[1]
    X=orig_data[:,0:cols-1]
    y=orig_data[:,cols-1:cols]
    theta=np.zeros([1,3])
    print(X[:5])
    print(X.shape,y.shape,theta.shape)
    ##损失函数
    def cost(X,y,theta):
        left=np.multiply(-y,np.log(model(X,theta)))
        right=np.multiply(1-y,np.log(1-model(X,theta)))
        return np.sum(left-right)/(len(X))
    print(cost(X,y,theta))
    
    #计算梯度
    def gradient(X, y, theta):
        grad = np.zeros(theta.shape)
        error = (model(X, theta) - y).ravel()
        for j in range(len(theta.ravel())):  # for each parmeter
            term = np.multiply(error, X[:, j])
            grad[0, j] = np.sum(term) / len(X)
    
        return grad
    ##比较3种不同梯度下降方法
    STOP_ITER=0
    STOP_COST=1
    STOP_GRAD=2
    
    def stopCriterion(type,value,threshold):
        if type==STOP_ITER: return value>threshold
        elif type==STOP_COST: return abs(value[-1]-value[-2])<threshold
        elif type==STOP_GRAD: return np.linalg.norm(value)<threshold
    
    import numpy.random
    #打乱数据洗牌
    def shuffledata(data):
        np.random.shuffle(data)
        cols=data.shape[1]
        X=data[:,0:cols-1]
        y=data[:,cols-1:]
        return X,y
    
    
    import time
    
    
    def descent(data, theta, batchSize, stopType, thresh, alpha):
        # 梯度下降求解
    
        init_time = time.time()
        i = 0  # 迭代次数
        k = 0  # batch
        X, y = shuffledata(data)
        grad = np.zeros(theta.shape)  # 计算的梯度
        costs = [cost(X, y, theta)]  # 损失值
    
        while True:
            grad = gradient(X[k:k + batchSize], y[k:k + batchSize], theta)
            k += batchSize  # 取batch数量个数据
            if k >= n:
                k = 0
                X, y = shuffledata(data)  # 重新洗牌
            theta = theta - alpha * grad  # 参数更新
            costs.append(cost(X, y, theta))  # 计算新的损失
            i += 1
    
            if stopType == STOP_ITER:
                value = i
            elif stopType == STOP_COST:
                value = costs
            elif stopType == STOP_GRAD:
                value = grad
            if stopCriterion(stopType, value, thresh): break
    
        return theta, i - 1, costs, grad, time.time() - init_time
    #选择梯度下降
    def runExpe(data, theta, batchSize, stopType, thresh, alpha):
        #import pdb; pdb.set_trace();
        theta, iter, costs, grad, dur = descent(data, theta, batchSize, stopType, thresh, alpha)
        name = "Original" if (data[:,1]>2).sum() > 1 else "Scaled"
        name += " data - learning rate: {} - ".format(alpha)
        if batchSize==n: strDescType = "Gradient"
        elif batchSize==1:  strDescType = "Stochastic"
        else: strDescType = "Mini-batch ({})".format(batchSize)
        name += strDescType + " descent - Stop: "
        if stopType == STOP_ITER: strStop = "{} iterations".format(thresh)
        elif stopType == STOP_COST: strStop = "costs change < {}".format(thresh)
        else: strStop = "gradient norm < {}".format(thresh)
        name += strStop
        print ("***{}
    Theta: {} - Iter: {} - Last cost: {:03.2f} - Duration: {:03.2f}s".format(
            name, theta, iter, costs[-1], dur))
        fig, ax = plt.subplots(figsize=(12,4))
        ax.plot(np.arange(len(costs)), costs, 'r')
        ax.set_xlabel('Iterations')
        ax.set_ylabel('Cost')
        ax.set_title(name.upper() + ' - Error vs. Iteration')
        return theta
    n= 100
    runExpe(orig_data,theta,n,STOP_ITER,thresh=5000,alpha=0.000001)
    plt.show()
    runExpe(orig_data,theta,n,STOP_GRAD,thresh=0.05,alpha=0.001)
    plt.show()
    runExpe(orig_data,theta,n,STOP_COST,thresh=0.000001,alpha=0.001)
    plt.show()
    #对比
    runExpe(orig_data, theta, 1, STOP_ITER, thresh=5000, alpha=0.001)
    plt.show()
    runExpe(orig_data, theta, 1, STOP_ITER, thresh=15000, alpha=0.000002)
    plt.show()
    runExpe(orig_data, theta, 16, STOP_ITER, thresh=15000, alpha=0.001)
    plt.show()
    ##对数据进行标准化 将数据按其属性(按列进行)减去其均值,然后除以其方差。
    #最后得到的结果是,对每个属性/每列来说所有数据都聚集在0附近,方差值为1
    
    from sklearn import preprocessing as pp
    
    scaled_data = orig_data.copy()
    scaled_data[:, 1:3] = pp.scale(orig_data[:, 1:3])
    
    runExpe(scaled_data, theta, n, STOP_ITER, thresh=5000, alpha=0.001)
    #设定阈值
    def predict(X, theta):
        return [1 if x >= 0.5 else 0 for x in model(X, theta)]
    
    # if __name__=='__main__':
    
    scaled_X = scaled_data[:, :3]
    y = scaled_data[:, 3]
    predictions = predict(scaled_X, theta)
    correct = [1 if ((a == 1 and b == 1) or (a == 0 and b == 0)) else 0 for (a, b) in zip(predictions, y)]
    accuracy = (sum(map(int, correct)) % len(correct))
    print ('accuracy = {0}%'.format(accuracy))
    

    运行结果

        Exam1      Exam2  Admitted
    0  34.623660  78.024693         0
    1  30.286711  43.894998         0
    2  35.847409  72.902198         0
    3  60.182599  86.308552         1
    4  79.032736  75.344376         1
    (100, 3)
    [[ 1.         34.62365962 78.02469282]
     [ 1.         30.28671077 43.89499752]
     [ 1.         35.84740877 72.90219803]
     [ 1.         60.18259939 86.3085521 ]
     [ 1.         79.03273605 75.34437644]]
    (100, 3) (100, 1) (1, 3)
    0.6931471805599453
    ***Original data - learning rate: 1e-06 - Gradient descent - Stop: 5000 iterations
    Theta: [[-0.00027127  0.00705232  0.00376711]] - Iter: 5000 - Last cost: 0.63 - Duration: 1.42s
    ***Original data - learning rate: 0.001 - Gradient descent - Stop: gradient norm < 0.05
    Theta: [[-2.37033409  0.02721692  0.01899456]] - Iter: 40045 - Last cost: 0.49 - Duration: 11.63s
    ***Original data - learning rate: 0.001 - Gradient descent - Stop: costs change < 1e-06
    Theta: [[-5.13364014  0.04771429  0.04072397]] - Iter: 109901 - Last cost: 0.38 - Duration: 32.27s
    ***Original data - learning rate: 0.001 - Stochastic descent - Stop: 5000 iterations
    Theta: [[-0.36946801  0.0618896   0.05188799]] - Iter: 5000 - Last cost: 2.28 - Duration: 0.60s
    ***Original data - learning rate: 2e-06 - Stochastic descent - Stop: 15000 iterations
    Theta: [[-0.00201976  0.01010609  0.00105193]] - Iter: 15000 - Last cost: 0.63 - Duration: 1.67s
    ***Original data - learning rate: 0.001 - Mini-batch (16) descent - Stop: 15000 iterations
    Theta: [[-1.03184406  0.02958433  0.02230517]] - Iter: 15000 - Last cost: 0.80 - Duration: 2.10s
    ***Scaled data - learning rate: 0.001 - Gradient descent - Stop: 5000 iterations
    Theta: [[0.3080807  0.86494967 0.77367651]] - Iter: 5000 - Last cost: 0.38 - Duration: 1.51s
    accuracy = 60%
    

     程序用到的测试数据:

    链接:https://pan.baidu.com/s/1Enr4JcPVzBiUCfvEYiVmlQ
    提取码:lg51

     

  • 相关阅读:
    c# cover他和parse区别
    函数指针的两种调用形式(转)
    -1的 补码
    xp 关 beep提示音
    case 内定义的变量 “crosses initialization” 交叉初始化错误
    WEBSTORM 打开多个项目的方法
    linux--用户管理--useradd
    委托
    C#多态学习总结
    SQL实现group by 分组后组内排序
  • 原文地址:https://www.cnblogs.com/277223178dudu/p/10239464.html
Copyright © 2011-2022 走看看