zoukankan      html  css  js  c++  java
  • RMQ_第一弹_Sparse Table


    title: RMQ_第一弹_Sparse Table
    date: 2018-09-21 21:33:45
    tags:

    • acm
    • RMQ
    • ST
    • dp
    • 数据结构
    • 算法
      categories:
    • ACM

    概述

    RMQ (Range Minimum/Maximum Query)

    从英文便可以看出这个算法的主要是询问一个区间内的最值问题,,,

    暑假集训的时候学习了 线段树 ,,,

    也可以对给定数组查询任意区间的最值问题,,,,

    这两个主要的区别就是 线段树 可以进行单点的修改操作,,,而 Sparse Table 算法不能进行点修改,,

    或者说这样修改一次重预处理一次不划算,,,

    所以说,,要是题目只是单纯的多次查询任意区间的最值,,,Sparse Table 首选,,毕竟,,毕竟写起来比线段树简单得多了,,,

    预处理

    算法原理

    基本思想是dp,,,,

    dp的状态 : 对于数组 (a[1-n]) , (F[i , j])表示从第 (i) 个位置开始 , 长度(2^j) 个数这个区间中的最值,,,;

    dp的初始值 : (F[i , 0] = a[i]);

    状态转移方程 : (F[i , j] = max (F[i , j - 1] , F[i + 2^{j - 1} , j - 1]));

    思想 : (F[i , j]) 就是不断取他的左右这两段的最值,,这两段的长度相等,都为 (2^{j - 1}) 个元素,,

    实现

    const int maxn = 5e4 + 10;
    int n , q;
    int a[maxn];
    int mx[maxn][20];
    int mi[maxn][20];
    void rmq()
    {
    	for (int i = 1; i <= n; ++i)
    		mx[i][0] = mi[i][0] = a[i];
    
    	for (int j = 1; (1 << j) <= n; ++j)
    	{
    		for (int i = 1; i + (1 << j) - 1 <= n; ++i)
    		{
    			mx[i][j] = max(mx[i][j - 1] , mx[i + (1 << (j - 1))][j - 1]);
    			mi[i][j] = min(mi[i][j - 1] , mi[i + (1 << (j - 1))][j - 1]);
    		}
    	}
    }
    

    这里我们需要注意的是循环的顺序,我们发现外层是j,内层所i,这是为什么呢?可以是i在外,j在内吗?
    答案是不可以。因为我们需要理解这个状态转移方程的意义。

    状态转移方程的含义是:先更新所有长度为F[i,0]即1个元素,然后通过2个1个元素的最值,获得所有长度为F[i,1]即2个元素的最值,然后再通过2个2个元素的最值,获得所有长度为F[i,2]即4个元素的最值,以此类推更新所有长度的最值。

    而如果是i在外,j在内的话,我们更新的顺序就是F[1,0],F[1,1],F[1,2],F[1,3],表示更新从1开始1个元素,2个元素,4个元素,8个元素(A[0],A[1],....A[7])的最值,这里F[1,3] = max(max(A[0],A[1],A[2],A[3]),max(A[4],A[5],A[6],A[7]))的值,但是我们根本没有计算max(A[0],A[1],A[2],A[3])和max(A[4],A[5],A[6],A[7]),所以这样的方法肯定是错误的。

    本段来自某大佬博客


    查询

    思想

    假如我们需要查询的区间为(i,j),那么我们需要找到覆盖这个闭区间(左边界取i,右边界取j)的最小幂(可以重复,比如查询5,6,7,8,9,我们可以查询5678和6789)。

    因为这个区间的长度为 (j - i + 1) ,所以我们可以取 (k=log2( j - i + 1)) ,则有:(RMQ(A, i, j)=max(F[i , k], F[ j - 2 ^ k + 1, k]))

    举例说明,要求区间[2,8]的最大值,(k = log_2(8 - 2 + 1)= 2),即求 (max(F[2, 2],F[8 - 2 ^ 2 + 1, 2]) = max(F[2, 2],F[5, 2]))

    实现

    int ans(int l , int r)
    {
    	int k = 0;
    	int len = r - l + 1;
    	while ((1 << (k + 1)) <= len)
    		++k;
    
    	return max (mx[l][k] , mx[r - (1 << k) + 1][k]) - min (mi[l][k] , mi[r - (1 << k) + 1][k]);
    }
    

    实战

    题目链接

    题目大意: 给定的数列a[1 - n] , 求出[l , r]这个区间内的极差 , 即最大值与最小值的差

    直接套板子,,,,

    ac代码:

    #include <iostream>
    #include <cmath>
    #include <cstring>
    #include <cstdio>
    using namespace std;
    const int maxn = 5e4 + 10;
    int n , q;
    int a[maxn];
    int mx[maxn][20];
    int mi[maxn][20];
    void rmq()
    {
    	for (int i = 1; i <= n; ++i)
    		mx[i][0] = mi[i][0] = a[i];
    
    	for (int j = 1; (1 << j) <= n; ++j)
    	{
    		for (int i = 1; i + (1 << j) - 1 <= n; ++i)
    		{
    			mx[i][j] = max(mx[i][j - 1] , mx[i + (1 << (j - 1))][j - 1]);
    			mi[i][j] = min(mi[i][j - 1] , mi[i + (1 << (j - 1))][j - 1]);
    		}
    	}
    }
    int ans(int l , int r)
    {
    	int k = 0;
    	int len = r - l + 1;
    	while ((1 << (k + 1)) <= len)
    		++k;
    
    	return max (mx[l][k] , mx[r - (1 << k) + 1][k]) - min (mi[l][k] , mi[r - (1 << k) + 1][k]);
    }
    using namespace std;
    int main(){ 
        while (scanf("%d%d" , &n , &q) != EOF)
    	{
    		for (int i = 1; i <= n; ++i)
    			scanf("%d" , &a[i]);
    
    		rmq();
    		
    		while (q--)
    		{
    			int l , r;
    			scanf("%d%d" , &l , &r);
    			printf("%d
    " , ans(l , r));
    		}
    	}
    	return 0;
    }
    

    kuangbin的板子:

    一维:

    const int MAXN = 50010;
    int dp[MAXN][20];
    int mm[MAXN];
    //初始化 RMQ, b 数组下标从 1 开始,从 0 开始简单修改
    void initRMQ(int n,int b[])
    {
        mm[0] = −1;
        for(int i = 1; i <= n; i++)
        {
            mm[i] = ((i&(i−1)) == 0)?mm[i−1]+1:mm[i−1];
            dp[i][0] = b[i];
        }
        for(int j = 1; j <= mm[n]; j++)
            for(int i = 1; i + (1<<j) −1 <= n; i++)
                dp[i][j] = max(dp[i][j−1],dp[i+(1<<(j−1))][j−1]);
    }
     //查询最大值
    int rmq(int x,int y)
    {
        int k = mm[y−x+1];
        return max(dp[x][k],dp[y−(1<<k)+1][k]);
    }
    
    剑之所指,心之所向,身之所往!!!
  • 相关阅读:
    逆向初级-win32(四)
    逆向初级-C++(三)
    逆向初级-C语言(二)
    逆向初级-汇编(一)
    Kimabll数仓架构下如何确定模型落地哪些表
    浅谈数据仓库设计
    (转)Go语言的%d,%p,%v等占位符的使用
    (转)深入MySQL源码 学习方法 何登成专家
    (转)浅析MySQL二段锁
    (转)MySQL:为什么无法KILL在processlist中的语句
  • 原文地址:https://www.cnblogs.com/31415926535x/p/9688994.html
Copyright © 2011-2022 走看看