zoukankan      html  css  js  c++  java
  • 一文完全掌握 Go math/rand

    Go 获取随机数是开发中经常会用到的功能, 不过这个里面还是有一些坑存在的, 本文将完全剖析 Go math/rand, 让你轻松使用 Go Rand.

    开篇一问: 你觉得 rand 会 panic 吗 ?

    rand panic

    源码剖析

    math/rand 源码其实很简单, 就两个比较重要的函数

    func (rng *rngSource) Seed(seed int64) {
    	rng.tap = 0
    	rng.feed = rngLen - rngTap
    
    	//...
    	x := int32(seed)
    	for i := -20; i < rngLen; i++ {
    		x = seedrand(x)
    		if i >= 0 {
    			var u int64
    			u = int64(x) << 40
    			x = seedrand(x)
    			u ^= int64(x) << 20
    			x = seedrand(x)
    			u ^= int64(x)
    			u ^= rngCooked[i]
    			rng.vec[i] = u
    		}
    	}
    }
    

    这个函数就是在设置 seed, 其实就是对 rng.vec 各个位置设置对应的值. rng.vec 的大小是 607.

    func (rng *rngSource) Uint64() uint64 {
    	rng.tap--
    	if rng.tap < 0 {
    		rng.tap += rngLen
    	}
    
    	rng.feed--
    	if rng.feed < 0 {
    		rng.feed += rngLen
    	}
    
    	x := rng.vec[rng.feed] + rng.vec[rng.tap]
    	rng.vec[rng.feed] = x
    	return uint64(x)
    }
    

    我们在使用不管调用 Intn(), Int31n() 等其他函数, 最终调用到就是这个函数. 可以看到每次调用就是利用 rng.feed rng.tap 从 rng.vec 中取到两个值相加的结果返回了. 同时还是这个结果又重新放入 rng.vec.

    在这里需要注意使用 rng.go 的 rngSource 时, 由于 rng.vec 在获取随机数时会同时设置 rng.vec 的值, 当多 goroutine 同时调用时就会有数据竞争问题. math/rand 采用在调用 rngSource 时加锁 sync.Mutex 解决.

    func (r *lockedSource) Uint64() (n uint64) {
    	r.lk.Lock()
    	n = r.src.Uint64()
    	r.lk.Unlock()
    	return
    }
    

    另外我们能直接使用 rand.Seed(), rand.Intn(100), 是因为 math/rand 初始化了一个全局的 globalRand 变量.

    var globalRand = New(&lockedSource{src: NewSource(1).(*rngSource)})
    
    func Seed(seed int64) { globalRand.Seed(seed) }
    
    func Uint32() uint32 { return globalRand.Uint32() }
    

    需要注意到由于调用 rngSource 加了锁, 所以直接使用 rand.Int32() 会导致全局的 goroutine 锁竞争, 所以在高并发场景时, 当你的程序的性能是卡在这里的话, 你需要考虑利用 New(&lockedSource{src: NewSource(1).(*rngSource)}) 为不同的模块生成单独的 rand. 不过根据目前的实践来看, 使用全局的 globalRand 锁竞争并没有我们想象中那么激烈. 使用 New 生成新的 rand 里面是有坑的, 开篇的 panic 就是这么产生的, 后面具体再说.

    种子(seed)到底起什么作用 ?

    func main() {
    	for i := 0; i < 10; i++ {
    		fmt.Printf("current:%d
    ", time.Now().Unix())
    		rand.Seed(time.Now().Unix())
    		fmt.Println(rand.Intn(100))
    	}
    }
    

    结果:

    current:1613814632
    65
    current:1613814632
    65
    current:1613814632
    65
    ...
    

    这个例子能得出一个结论: 相同种子,每次运行的结果都是一样的. 这是为什么呢?

    在使用 math/rand 的时候, 一定需要通过调用 rand.Seed 来设置种子, 其实就是给 rng.vec 的 607 个槽设置对应的值. 通过上面的源码那可以看出来, rand.Seed 会调用一个 seedrand 的函数, 来计算对应槽的值.

    func seedrand(x int32) int32 {
    	const (
    		A = 48271
    		Q = 44488
    		R = 3399
    	)
    
    	hi := x / Q
    	lo := x % Q
    	x = A*lo - R*hi
    	if x < 0 {
    		x += int32max
    	}
    	return x
    }
    

    这个函数的计算结果并不是随机的, 而是根据 seed 实际算出来的. 另外这个函数并不是随便写的, 是有相关的数学证明的.

    这也导致了相同的 seed, 最终设置到 rng.vec里面的值是相同的, 通过 Intn 取出的也是相同的值

    我遇到的那些坑

    1. rand panic

    文章开头的截图就是项目开发中使用别人封装的底层库, 在某天出现的 panic. 大概实现的代码

    // random.go
    
    var (
    	rrRand = rand.New(rand.NewSource(time.Now().Unix()))
    )
    
    type Random struct{}
    
    func (r *Random) Balance(sf *service.Service) ([]string, error) {
    	// .. 通过服务发现获取到一堆ip+port, 然后随机拿到其中的一些ip和port出来
    	randIndexes := rrRand.Perm(randMax)
    
    	// 返回这些ip 和port
    }
    
    

    这个 Random 会被并发调用, 由于 rrRand 不是并发安全的, 所以就导致了调用 rrRand.Perm 时偶尔会出现 panic 情况.

    在使用 math/rand 的时候, 有些人使用 math.Intn() 看了下注释发现是全局共享了一个锁, 担心出现锁竞争, 所以用 rand.New 来初始化一个新的 rand, 但是要注意到 rand.New 初始化出来的 rand 并不是并发安全的.

    修复方案: 就是把 rrRand 换成了 globalRand, 在线上高并发场景下, 发现全局锁影响并不大.

    2. 获取的都是同一个机器

    流量不均匀

    同样也是底层封装的 rpc 库, 使用 random 的方式来流量分发, 在线上跑了一段时间后, 流量都路由到一台机器上了, 导致服务直接宕机. 大概实现代码:

    func Call(ctx *gin.Context, method string, service string, data map[string]interface{}) (buf []byte, err error) {
    	ins, err := ral.GetInstance(ctx, ral.TYPE_HTTP, service)
    	if err != nil {
    		// 错误处理
    	}
    	defer ins.Release()
    
    	if b, e := ins.Request(ctx, method, data, head); e == nil {
    		// 错误处理
    	}
    	// 其他逻辑, 重试等等
    }
    
    func GetInstance(ctx *gin.Context, modType string, name string) (*Instance, error) {
    	// 其他逻辑..
    
    	switch res.Strategy {
    	case WITH_RANDOM:
    		if res.rand == nil {
    			res.rand = rand.New(rand.NewSource(time.Now().Unix()))
    		}
    		which = res.rand.Intn(res.count)
    	case 其他负载均衡查了
    	}
    
    	// 返回其中一个ip和port
    }
    

    引起问题的原因: 可以看出来每次请求到来都是利用 GetInstance 来获取一个 ip 和 port, 如果采用 Random 方式的流量负载均衡, 每次都是重新初始化一个 rand. 我们已经知道当设置相同的种子,每次运行的结果都是一样的. 当瞬间流量过大时, 并发请求 GetInstance, 由于那一刻 time.Now().Unix() 的值是一样的, 这样就会导致获取到随机数都是一样的, 所以就导致最后获取到的 ip, port都是一样的, 流量都分发到这台机器上了.

    修复方案: 修改成 globalRand 即可.

    rand 未来期望

    说到这里基本上可以看出来, 为了防止全局锁竞争问题, 在使用 math/rand 的时候, 首先都会想到自定义 rand, 但是就容易整出来莫名其妙的问题.

    为什么 math/rand 需要加锁呢?

    大家都知道 math/rand 是伪随机的, 但是在设置完 seed 后, rng.vec 数组的值基本上就确定下来了, 这明显就不是随机了, 为了增加随机性, 通过 Uint64() 获取到随机数后, 还会重新去设置 rng.vec. 由于存在并发获取随机数的需求, 也就有了并发设置 rng.vec 的值, 所以需要对 rng.vec 加锁保护.

    使用 rand.Intn() 确实会有全局锁竞争问题, 你觉得 math/rand 未来会优化吗? 以及如何优化? 欢迎留言讨论

    博客文章如无特殊说明,都是作者原创,转载请在醒目的位置链接文章出处及作者,谢谢!
  • 相关阅读:
    h5-news_index
    h5-爆料view
    h5-列表
    h5-注册
    h5-登录
    h5-弹出层layer,提示,顶部横条,
    jquery 弹窗插件 layer
    jQuery幻灯片插件Owl Carousel
    display:block jquery.sort()
    Android 开源框架ViewPageIndicator 和 ViewPager 仿网易新闻客户端Tab标签
  • 原文地址:https://www.cnblogs.com/457220157-FTD/p/14699372.html
Copyright © 2011-2022 走看看