Scramble String
Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.
Below is one possible representation of s1 =
"great"
:great / gr eat / / g r e at / a tTo scramble the string, we may choose any non-leaf node and swap its two children.
For example, if we choose the node
"gr"
and swap its two children, it produces a scrambled string"rgeat"
.rgeat / rg eat / / r g e at / a tWe say that
"rgeat"
is a scrambled string of"great"
.Similarly, if we continue to swap the children of nodes
"eat"
and"at"
, it produces a scrambled string"rgtae"
.rgtae / rg tae / / r g ta e / t aWe say that
"rgtae"
is a scrambled string of"great"
.Given two strings s1 and s2 of the same length, determine if s2 is a scrambled string of s1.
解题思路:
要满足isScramble(string s1,string s2),则必然满足isScramble(s11,s21)&&isScramble(s12,s22)或者isScramble(s11,s22)&&isScramble(s12,s21)
递归结束条件,当s1.compare(s2) == 0 时return false,即s1 和 s2 都只有一个字符且相等的时候。
当排序的sort1 ,sort2 不相等,即说明s1 和 s2 中的字符不同,return false,加上这个检查就可以大大的减少递归次数。否则就会超时。
每一次调用的s1 和 s2 的长度都是相等的,所以isScramble(s11,s21)&&isScramble(s12,s22)的时候s11.size() == s21.size(),
isScramble(s11,s22)&&isScramble(s12,s21)的时候s11.size() == s22.size()。
还有动态规划的解法,目前还不太熟,正在研究中……
代码如下:
class Solution { public: bool isScramble(string s1, string s2) { string sort1 = s1,sort2 = s2; sort(sort1.begin(),sort1.end()); sort(sort2.begin(),sort2.end()); if(sort1.compare(sort2) != 0) return false; if(s1.compare(s2) == 0) return true; int len = s1.size(); for(int i = 1; i < len; i++){ string s11 = s1.substr(0,i); string s12 = s1.substr(i); string s21 = s2.substr(0,i); string s22 = s2.substr(i); if(isScramble(s11,s21)&&isScramble(s12,s22)) return true; s21 = s2.substr(0,len-i); s22 = s2.substr(len-i); if(isScramble(s11,s22)&&isScramble(s12,s21)) return true; } return false; } };