zoukankan      html  css  js  c++  java
  • Redis基础---哨兵机制

    主库发生故障,竟无法同步从库、无法处理客户端的写操作

    如果主库挂了,我们就需要运行一个新主库,比如说把一个从库切换为主库,把它当成主库。

    哨兵机制

    哨兵其实就是一个运行在特殊模式下的 Redis 进程,主从库实例运行的同时,它也在运行。哨兵主要负责的就是三个任务:监控、选主(选择主库)和通知

      监控是指哨兵进程在运行时,周期性地给所有的主从库发送 PING 命令,检测它们是否仍然在线运行。如果从库没有在规定时间内响应哨兵的 PING 命令,哨兵就会把它标记为“下线状态”;同样,如果主库也没有在规定时间内响应哨兵的 PING 命令,哨兵就会判定主库下线,然后开始自动切换主库的流程。

      选主。主库挂了以后,哨兵就需要从很多个从库里,按照一定的规则选择一个从库实例,把它作为新的主库。

      通知。在执行通知任务时,哨兵会把新主库的连接信息发给其他从库,让它们执行 replicaof 命令,和新主库建立连接,并进行数据复制。同时,哨兵会把新主库的连接信息通知给客户端,让它们把请求操作发到新主库上。

    主观下线和客观下线 

    哨兵进程会使用 PING 命令检测它自己和主、从库的网络连接情况,用来判断实例的状态。如果哨兵发现主库或从库对 PING 命令的响应超时了,那么,哨兵就会先把它标记为“主观下线”。

    如果检测的是从库,那么,哨兵简单地把它标记为“主观下线”就行了,因为从库的下线影响一般不太大,集群的对外服务不会间断。

    但是,如果检测的是主库,那么,哨兵还不能简单地把它标记为“主观下线,可能会出现误判。

    通常会采用多实例组成的集群模式进行部署,这也被称为哨兵集群。引入多个哨兵实例一起来判断,就可以避免单个哨兵因为自身网络状况不好,而误判主库下线的情况。同时,多个哨兵的网络同时不稳定的概率较小,由它们一起做决策,误判率也能降低。

    “客观下线”的标准就是,当有 N 个哨兵实例时,最好要有 N/2 + 1 个实例判断主库为“主观下线”,才能最终判定主库为“客观下线”

     如何选定新主库

     一般来说,我把哨兵选择新主库的过程称为“筛选 + 打分”。简单来说,我们在多个从库中,先按照一定的筛选条件,把不符合条件的从库去掉。然后,我们再按照一定的规则,给剩下的从库逐个打分,将得分最高的从库选为新主库,如下图所示: 

     筛选的条件

      在选主时,除了要检查从库的当前在线状态,还要判断它之前的网络连接状态。

      具体怎么判断呢?你使用配置项 down-after-milliseconds * 10。其中,down-after-milliseconds 是我们认定主从库断连的最大连接超时时间。如果在 down-after-milliseconds 毫秒内,主从节点都没有通过网络联系上,我们就可以认为主从节点断连了。如果发生断连的次数超过了 10 次,就说明这个从库的网络状况不好,不适合作为新主库。

    打分

      按照三个规则依次进行三轮打分,这三个规则分别是从库优先级、从库复制进度以及从库 ID 号。

    第一轮:优先级最高的从库得分高。

      用户可以通过 slave-priority 配置项,给不同的从库设置不同优先级。在选主时,哨兵会给优先级高的从库打高分,如果有一个从库优先级最高,那么它就是新主库了。如果从库的优先级都一样,那么哨兵开始第二轮打分。

    第二轮:和旧主库同步程度最接近的从库得分高。

      这个规则的依据是,如果选择和旧主库同步最接近的那个从库作为主库。

      master_repl_offset 在主库断连后,是拿不到的,因为保存在主库中,所以实际从库的选举是通过相互比较slave_repl_offset来解决问题的

    第三轮:ID 号小的从库得分高。

      每个实例都会有一个 ID,这个 ID 就类似于这里的从库的编号。目前,Redis 在选主库时,有一个默认的规定:在优先级和复制进度都相同的情况下,ID 号最小的从库得分最高,会被选为新主库。

    评论精选

    哨兵在操作主从切换的过程中,客户端能否正常地进行请求操作?

      如果客户端使用了读写分离,那么读请求可以在从库上正常执行,不会受到影响。但是由于此时主库已经挂了,而且哨兵还没有选出新的主库,所以在这期间写请求会失败,失败持续的时间 = 哨兵切换主从的时间 + 客户端感知到新主库 的时间。

    如果不想让业务感知到异常,客户端只能把写失败的请求先缓存起来或写入消息队列中间件中,等哨兵切换完主从后,再把这些写请求发给新的主库,但这种场景只适合对写入请求返回值不敏感的业务,而且还需要业务层做适配,另外主从切换时间过长,也会导致客户端或消息队列中间件缓存写请求过多,切换完成之后重放这些请求的时间变长。

      哨兵检测主库多久没有响应就提升从库为新的主库,这个时间是可以配置的(down-after-milliseconds参数)。配置的时间越短,哨兵越敏感,哨兵集群认为主库在短时间内连不上就会发起主从切换,这种配置很可能因为网络拥塞但主库正常而发生不必要的切换,当然,当主库真正故障时,因为切换得及时,对业务的影响最小。如果配置的时间比较长,哨兵越保守,这种情况可以减少哨兵误判的概率,但是主库故障发生时,业务写失败的时间也会比较久,缓存写请求数据量越多。

    应用程序不感知服务的中断,还需要哨兵和客户端做些什么?当哨兵完成主从切换后,客户端需要及时感知到主库发生了变更,然后把缓存的写请求写入到新库中,保证后续写请求不会再受到影响,具体做法如下:

    哨兵提升一个从库为新主库后,哨兵会把新主库的地址写入自己实例的pubsub(switch-master)中。客户端需要订阅这个pubsub,当这个pubsub有数据时,客户端就能感知到主库发生变更,同时可以拿到最新的主库地址,然后把写请求写到这个新主库即可,这种机制属于哨兵主动通知客户端。

    如果客户端因为某些原因错过了哨兵的通知,或者哨兵通知后客户端处理失败了,安全起见,客户端也需要支持主动去获取最新主从的地址进行访问。

    所以,客户端需要访问主从库时,不能直接写死主从库的地址了,而是需要从哨兵集群中获取最新的地址(sentinel get-master-addr-by-name命令),这样当实例异常时,哨兵切换后或者客户端断开重连,都可以从哨兵集群中拿到最新的实例地址。

    一般Redis的SDK都提供了通过哨兵拿到实例地址,再访问实例的方式,我们直接使用即可,不需要自己实现这些逻辑。当然,对于只有主从实例的情况,客户端需要和哨兵配合使用,而在分片集群模式下,这些逻辑都可以做在proxy层,这样客户端也不需要关心这些逻辑了,Codis就是这么做的。

    另外再简单回答下哨兵相关的问题:

    1、哨兵集群中有实例挂了,怎么办,会影响主库状态判断和选主吗?

      这个属于分布式系统领域的问题了,指的是在分布式系统中,如果存在故障节点,整个集群是否还可以提供服务?而且提供的服务是正确的?

    这是一个分布式系统容错问题,这方面最著名的就是分布式领域中的“拜占庭将军”问题了,“拜占庭将军问题”不仅解决了容错问题,还可以解决错误节点的问题,虽然比较复杂,但还是值得研究的,有兴趣的同学可以去了解下。

    简单说结论:存在故障节点时,只要集群中大多数节点状态正常,集群依旧可以对外提供服务。具体推导过程细节很多,大家去查前面的资料了解就好。

    2、哨兵集群多数实例达成共识,判断出主库“客观下线”后,由哪个实例来执行主从切换呢?

      哨兵集群判断出主库“主观下线”后,会选出一个“哨兵领导者”,之后整个过程由它来完成主从切换。

    但是如何选出“哨兵领导者”?这个问题也是一个分布式系统中的问题,就是我们经常听说的共识算法,指的是集群中多个节点如何就一个问题达成共识。共识算法有很多种,例如Paxos、Raft,这里哨兵集群采用的类似于Raft的共识算法。

    简单来说就是每个哨兵设置一个随机超时时间,超时后每个哨兵会请求其他哨兵为自己投票,其他哨兵节点对收到的第一个请求进行投票确认,一轮投票下来后,首先达到多数选票的哨兵节点成为“哨兵领导者”,如果没有达到多数选票的哨兵节点,那么会重新选举,直到能够成功选出“哨兵领导者”。

  • 相关阅读:
    简述虚拟打印功能的实现方法。
    什么是spool系统,什么是预输入,什么是缓输出?
    什么是虚拟设备技术,什么是虚拟设备,如何进行虚拟设备分配?
    什么是共享设备,对共享设备如何分配?
    什么是独占设备,对独占设备如何分配?
    对I/O设备分配的一般策略是什么?
    maven+nexus setting.xml配置(收藏)
    MySQL自动化安装(双主多从读写分离)
    Shell常用操作
    shell中的比较语句
  • 原文地址:https://www.cnblogs.com/520lq/p/14648505.html
Copyright © 2011-2022 走看看