zoukankan      html  css  js  c++  java
  • Pytorch-卷积神经网络CNN之ResNet的Pytorch代码实现

    先说一个小知识,助于理解代码中各个层之间维度是怎么变换的。

    卷积函数:一般只用来改变输入数据的维度,例如3维到16维。

    Conv2d()

    Conv2d(in_channels:int,out_channels:int,kernel_size:Union[int,tuple],stride=1,padding=o):   
    """   
    :param in_channels: 输入的维度    
    :param out_channels: 通过卷积核之后,要输出的维度    
    :param kernel_size: 卷积核大小    
    :param stride: 移动步长    
    :param padding: 四周添多少个零  
    """
    

    一个小例子:

    import torch
    import torch.nn
    # 定义一个16张照片,每个照片3个通道,大小是28*28
    x= torch.randn(16,3,32,32)
    # 改变照片的维度,从3维升到16维,卷积核大小是5
    conv= torch.nn.Conv2d(3,16,kernel_size=5,stride=1,padding=0)
    res=conv(x)
    
    print(res.shape)
    # torch.Size([16, 16, 28, 28])
    # 维度升到16维,因为卷积核大小是5,步长是1,所以照片的大小缩小了,变成28
    

    卷积神经网络实战之ResNet18:

    下面放一个ResNet18的一个示意图,

    ResNet18主要是在层与层之间,加入了一个短接层,可以每隔k个层,进行一次短接。网络层的层数不是 越深就越好。
    ResNet18就是,如果在原先的基础上再加上k层,如果有小优化,则保留,如果比原先结果还差,那就利用短接层,直接跳过。

    ResNet18的构造如下:

    ResNet18(
      (conv1): Sequential(
        (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(3, 3))
        (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
      (blk1): ResBlk(
        (conv1): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
        (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (extra): Sequential(
          (0): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2))
          (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
      (blk2): ResBlk(
        (conv1): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
        (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (extra): Sequential(
          (0): Conv2d(128, 256, kernel_size=(1, 1), stride=(2, 2))
          (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
      (blk3): ResBlk(
        (conv1): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
        (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (extra): Sequential(
          (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2))
          (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
      (blk4): ResBlk(
        (conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
        (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (extra): Sequential()
      )
      (outlayer): Linear(in_features=512, out_features=10, bias=True)
    )
    

    程序运行前,先启动visdom,如果没有配置好visdom环境的,先百度安装好visdom环境

    • 1.使用快捷键win+r,在输入框输出cmd,然后在命令行窗口里输入python -m visdom.server,启动visdom

    代码实战

    定义一个名为resnet.py的文件,代码如下

    import torch
    from    torch import  nn
    from torch.nn import functional as F
    
    # 定义两个卷积层 + 一个短接层
    class ResBlk(nn.Module):
        def __init__(self,ch_in,ch_out,stride=1):
            super(ResBlk, self).__init__()
    
            # 两个卷积层
            self.conv1=nn.Conv2d(ch_in,ch_out,kernel_size=3,stride=stride,padding=1)
            self.bn1=nn.BatchNorm2d(ch_out)
            self.conv2=nn.Conv2d(ch_out,ch_out,kernel_size=3,stride=1,padding=1)
            self.bn2=nn.BatchNorm2d(ch_out)
    
            # 短接层
            self.extra=nn.Sequential()
            if ch_out != ch_in:
                self.extra=nn.Sequential(
                    nn.Conv2d(ch_in,ch_out,kernel_size=1,stride=stride),
                    nn.BatchNorm2d(ch_out)
                )
        def forward(self,x):
            """
            :param x: [b,ch,h,w]
            :return:
            """
            out=F.relu(self.bn1(self.conv1(x)))
            out=self.bn2(self.conv2(out))
    
            # 短接层
            # element-wise add: [b,ch_in,h,w]=>[b,ch_out,h,w]
            out=self.extra(x)+out
            return out
    
    class ResNet18(nn.Module):
        def __init__(self):
            super(ResNet18, self).__init__()
    
            # 定义预处理层
            self.conv1=nn.Sequential(
                nn.Conv2d(3,64,kernel_size=3,stride=3,padding=0),
                nn.BatchNorm2d(64)
            )
    
            # 定义堆叠ResBlock层
            # followed 4 blocks
            # [b,64,h,w]-->[b,128,h,w]
            self.blk1=ResBlk(64,128,stride=2)
            # [b,128,h,w]-->[b,256,h,w]
            self.blk2=ResBlk(128,256,stride=2)
            # [b,256,h,w]-->[b,512,h,w]
            self.blk3=ResBlk(256,512,stride=2)
            # [b,512,h,w]-->[b,512,h,w]
            self.blk4=ResBlk(512,512,stride=2)
    
            # 定义全连接层
            self.outlayer=nn.Linear(512,10)
    
        def forward(self,x):
            """
            :param x:
            :return:
            """
            # 1.预处理层
            x=F.relu(self.conv1(x))
    
            # 2. 堆叠ResBlock层:channel会慢慢的增加,  长和宽会慢慢的减少
            # [b,64,h,w]-->[b,512,h,w]
            x=self.blk1(x)
            x=self.blk2(x)
            x=self.blk3(x)
            x=self.blk4(x)
    
            # print("after conv:",x.shape) # [b,512,2,2]
            # 不管原先什么后面两个维度是多少,都化成[1,1],
            # [b,512,1,1]
            x=F.adaptive_avg_pool2d(x,[1,1])
            # print("after pool2d:",x.shape) # [b,512,1,1]
    
            # 将[b,512,1,1]打平成[b,512*1*1]
            x=x.view(x.size(0),-1)
    
            # 3.放到全连接层,进行打平
            # [b,512]-->[b,10]
            x=self.outlayer(x)
    
            return x
    def main():
        blk=ResBlk(64,128,stride=2)
        temp=torch.randn(2,64,32,32)
        out=blk(temp)
        # print('block:',out.shape)
    
        x=torch.randn(2,3,32,32)
        model=ResNet()
        out=model(x)
        # print("resnet:",out.shape)
    
    if __name__ == '__main__':
        main()
    

    定义一个名为main.py的文件,代码如下

    import torch
    from torchvision import datasets
    from torchvision import transforms
    from torch.utils.data import DataLoader
    from torch import nn,optim
    from visdom import Visdom
    # from lenet5 import  Lenet5
    from resnet import ResNet18
    import time
    
    def main():
        batch_siz=32
        cifar_train = datasets.CIFAR10('cifar',True,transform=transforms.Compose([
            transforms.Resize((32,32)),
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                 std=[0.229, 0.224, 0.225])
        ]),download=True)
        cifar_train=DataLoader(cifar_train,batch_size=batch_siz,shuffle=True)
    
        cifar_test = datasets.CIFAR10('cifar',False,transform=transforms.Compose([
            transforms.Resize((32,32)),
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                 std=[0.229, 0.224, 0.225])
        ]),download=True)
        cifar_test=DataLoader(cifar_test,batch_size=batch_siz,shuffle=True)
    
        x,label = iter(cifar_train).next()
        print('x:',x.shape,'label:',label.shape)
    
        # 指定运行到cpu //GPU
        device=torch.device('cpu')
        # model = Lenet5().to(device)
        model = ResNet18().to(device)
    
        # 调用损失函数use Cross Entropy loss交叉熵
        # 分类问题使用CrossEntropyLoss比MSELoss更合适
        criteon = nn.CrossEntropyLoss().to(device)
        # 定义一个优化器
        optimizer=optim.Adam(model.parameters(),lr=1e-3)
        print(model)
    
        viz=Visdom()
        viz.line([0.],[0.],win="loss",opts=dict(title='Lenet5 Loss'))
        viz.line([0.],[0.],win="acc",opts=dict(title='Lenet5 Acc'))
    
        # 训练train
        for epoch in range(1000):
            # 变成train模式
            model.train()
            # barchidx:下标,x:[b,3,32,32],label:[b]
            str_time=time.time()
            for barchidx,(x,label) in enumerate(cifar_train):
                # 将x,label放在gpu上
                x,label=x.to(device),label.to(device)
                # logits:[b,10]
                # label:[b]
                logits = model(x)
                loss = criteon(logits,label)
    
                # viz.line([loss.item()],[barchidx],win='loss',update='append')
                # backprop
                optimizer.zero_grad()
                loss.backward()
                optimizer.step()
                # print(barchidx)
            end_time=time.time()
            print('第 {} 次训练用时: {}'.format(epoch,(end_time-str_time)))
            viz.line([loss.item()],[epoch],win='loss',update='append')
            print(epoch,'loss:',loss.item())
    
    
            # 变成测试模式
            model.eval()
            with torch.no_grad():
                #  测试test
                # 正确的数目
                total_correct=0
                total_num=0
                for x,label in cifar_test:
                    # 将x,label放在gpu上
                    x,label=x.to(device),label.to(device)
                    # [b,10]
                    logits=model(x)
                    # [b]
                    pred=logits.argmax(dim=1)
                    # [b] = [b'] 统计相等个数
                    total_correct+=pred.eq(label).float().sum().item()
                    total_num+=x.size(0)
                acc=total_correct/total_num
                print(epoch,'acc:',acc)
                print("------------------------------")
    
                viz.line([acc],[epoch],win='acc',update='append')
                # viz.images(x.view(-1, 3, 32, 32), win='x')
    
    
    if __name__ == '__main__':
        main()
    

    测试结果

    ResNet跑起来太费劲了,需要用GPU跑,但是我的电脑不支持GPU,头都大了,用cpu跑二十多分钟学习一次,头都大了。

  • 相关阅读:
    01011_怎么打开任务管理器?win7打开任务管理器方法
    php入门之数据类型
    手把手教你开发jquery插件(三)
    手把手教你开发jquery插件
    php7.0新特性
    Java类和对象的概念
    php新手第一次安装mongo
    什么是SQL游标?
    C#学习笔记2
    转发一篇分析LinQ是什么?
  • 原文地址:https://www.cnblogs.com/52dxer/p/13837180.html
Copyright © 2011-2022 走看看