zoukankan      html  css  js  c++  java
  • hdu 1040 As Easy As A+B

    As Easy As A+B

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 63966    Accepted Submission(s): 27563


    Problem Description
    These days, I am thinking about a question, how can I get a problem as easy as A+B? It is fairly difficulty to do such a thing. Of course, I got it after many waking nights.
    Give you some integers, your task is to sort these number ascending (升序).
    You should know how easy the problem is now!
    Good luck!
     
    Input
    Input contains multiple test cases. The first line of the input is a single integer T which is the number of test cases. T test cases follow. Each test case contains an integer N (1<=N<=1000 the number of integers to be sorted) and then N integers follow in the same line.
    It is guarantied that all integers are in the range of 32-int.
     
    Output
    For each case, print the sorting result, and one line one case.
     
    Sample Input
    2 3 2 1 3 9 1 4 7 2 5 8 3 6 9
     
    Sample Output
    1 2 3 1 2 3 4 5 6 7 8 9
     
    Author
    lcy
     
    题解:和a+b一样简单的题目
    直接就是一个排序就可以AC的题目
    不过要注意一下这个题目的格式问题 
    我第一次提交的时候就是格式错了一次
     1 #include <stdlib.h>
     2 #include <iostream>
     3 #include <cstdio>
     4 #include <cstring>
     5 #include <vector>
     6 #include <algorithm>
     7 using namespace std;
     8 int a[10005];
     9 int main() {
    10   int t,n;
    11   cin>>t;
    12   while(t--)
    13   {
    14       cin>>n;
    15       for(int i=0;i<n;i++)
    16       {
    17           cin>>a[i];
    18       }
    19       sort(a,a+n);
    20       for(int i=0;i<n-1;i++)
    21       {
    22           printf("%d ",a[i]);
    23       }
    24       printf("%d
    ",a[n-1]);
    25   }
    26     return 0;
    27 }
    View Code
  • 相关阅读:
    陶哲轩实分析 推论 13.4.7
    陶哲轩实分析 定理 13.4.5
    陶哲轩实分析 定理 13.4.5
    陶哲轩实分析 习题 13.4.6
    陶哲轩实分析 定理 13.3.5 :紧致度量空间上的连续函数一致连续
    陶哲轩实分析 习题 13.4.7
    陶哲轩实分析 定理 13.4.6
    二阶行列式和三阶行列式
    opencvminMaxldx寻找最大值和最小值
    opencvtranspose转置
  • 原文地址:https://www.cnblogs.com/52why/p/7483035.html
Copyright © 2011-2022 走看看