zoukankan      html  css  js  c++  java
  • Popular Cows (POJ No.2186)

    Description

    Every cow's dream is to become the most popular cow in the herd. In a herd of N (1 <= N <= 10,000) cows, you are given up to M (1 <= M <= 50,000) ordered pairs of the form (A, B) that tell you that cow A thinks that cow B is popular. Since popularity is transitive, if A thinks B is popular and B thinks C is popular, then A will also think that C is 
    popular, even if this is not explicitly specified by an ordered pair in the input. Your task is to compute the number of cows that are considered popular by every other cow. 

    Input

    * Line 1: Two space-separated integers, N and M 

    * Lines 2..1+M: Two space-separated numbers A and B, meaning that A thinks B is popular. 

    Output

    * Line 1: A single integer that is the number of cows who are considered popular by every other cow. 

    Sample Input

    3 3
    1 2
    2 1
    2 3
    

    Sample Output

    1



    题解:
    考虑以牛为顶点的有向图,对每个需对(A,B)连一条从A到B的边。我们不妨假设两头牛A,B都被其他牛认为是红牛。那么就知道A,B一定同属一个强连通分量,即存在一个包含A,B两个顶点的圈。反之,如果一个牛被其他牛认为是红牛,那么他所属的强连通分量中的牛一定全部是红牛。所以我们只需要找出拓扑序最大的强连通分量的个数就可以了。

    AC代码:
     1 #include<iostream>
     2 #include<cctype>
     3 using namespace std;
     4 const int MAXN=500000+10;
     5 //-------------------------
     6 void read(int &x){
     7     x=0;char ch=getchar();int f=1;
     8     for(;!isdigit(ch);ch=getchar())if(ch=='-')f=-1;
     9     for(;isdigit(ch);ch=getchar())x=x*10+ch-'0';
    10     x*=f;
    11 }
    12 //-------------------------
    13 int n,m,tmp;
    14 int topo[MAXN],cmp[MAXN];
    15 bool vis[MAXN];
    16 int first[MAXN],next[MAXN],v[MAXN],e;
    17 void AddEdge(int a,int b){
    18     v[++e]=b;
    19     next[e]=first[a];
    20     first[a]=e;
    21 }
    22 
    23 int rfirst[MAXN],rnext[MAXN],rv[MAXN],re;
    24 void rAddEdge(int a,int b){
    25     rv[++re]=b;
    26     rnext[re]=rfirst[a];
    27     rfirst[a]=re;
    28 }
    29 //-------------------------
    30 void dfs(int x){
    31     vis[x]=1;
    32     for(int i=first[x];i;i=next[i])
    33         if(!vis[v[i]])dfs(v[i]);
    34     topo[++tmp]=x;
    35 }
    36 
    37 void rdfs(int x,int k){
    38     vis[x]=1;
    39     cmp[x]=k;
    40     for(int i=rfirst[x];i;i=rnext[i])
    41         if(!vis[rv[i]])rdfs(rv[i],k);
    42 }
    43 //---------------------------
    44 int k=1;
    45 int scc(){
    46     memset(vis,0,sizeof(vis));
    47     memset(topo,0,sizeof(topo));
    48     for(int i=1;i<=n;i++){
    49         if(!vis[i])dfs(i);
    50     }
    51     memset(vis,0,sizeof(vis));
    52     for(int i=n;i>=1;i--)if(!vis[topo[i]])rdfs(topo[i],k++);
    53     return k-1;
    54 }
    55 //---------------------------
    56 int main(){
    57     read(n);read(m);
    58     for(int i=1;i<=m;i++){
    59         int x,y;
    60         read(x);read(y);
    61         AddEdge(x,y);
    62         rAddEdge(y,x);
    63     }
    64     int nn=scc();
    65     
    66     int u=0,num=0;
    67     for(int i=1;i<=n;i++)
    68         if(cmp[i]==nn){u=i;num++;}
    69     memset(vis,0,sizeof(vis));
    70     rdfs(u,0);
    71     for(int i=1;i<=n;i++)
    72         if(!vis[i]){
    73             num=0;
    74             break;
    75         }
    76     printf("%d
    ",num);
    77 } 
    View Code
    
    
    


  • 相关阅读:
    paper 113:Bhattacharyya distance
    (ZT)算法杂货铺——分类算法之朴素贝叶斯分类(Naive Bayesian classification)
    (ZT)算法杂货铺——分类算法之贝叶斯网络(Bayesian networks)
    (ZT)算法杂货铺——分类算法之决策树(Decision tree)
    (ZT)算法杂货铺——k均值聚类(K-means)
    超详细的遗传算法(Genetic Algorithm)解析
    Ontology理论研究和应用建模
    观察者模式(Observer)和发布(Publish/订阅模式(Subscribe)的区别
    程序员常用字体(vs2008字体修改方案)
    雾计算和边缘计算的区别
  • 原文地址:https://www.cnblogs.com/543Studio/p/5183515.html
Copyright © 2011-2022 走看看