zoukankan      html  css  js  c++  java
  • Coursera台大机器学习技法课程笔记07-Blending and Bagging

            这一节讲如何将得到的feature或hypothesis组合起来用于预测。

           1. 林老师给出了几种方法

            

            在选择g时,需要选择一个很强的g来确保Eval最小,但如果每个g都很弱该怎么办呢

         这个时候可以选择Aggregation的方式将这些若g组合起来,组合起来的G,既能feature transform又能regularization这一对矛盾的性质。

         

        2.接着讲了用uniform blending的方式来classification或regression,并推导了使用uniform blending的好处:Eout更小

         

             接着解释了上述不等式的物理意义:一个算法的期望表现,等于consensus的表现加上consensus期望的偏差,通过uniform blending来消除variance。

             

         3.接下来讲的是linear blending.

            采用这种方式的一个问题是overfitting。对此,林老师的建议是,选择的时候,blending要在validation上做。

            

          下面仍然是介绍如何避免overfitting,可以用非线性model,但没听懂,泪。。。。

           

          4.接下来讲的是如何得到不同的g。

            

           接下来介绍了一种方法bootstrapping:为了得到不同的g,对数据资料进行放回抽取,对每小份资料进行学习得到g

           

          这位博主也总结了下,可参考:http://blog.csdn.net/lg1259156776/article/details/46821389

  • 相关阅读:
    Windows Server 2019 mmc无法创建单元
    .NET 设置IE代理
    检测WebService是否存在
    C#读取图片像素
    23种设计模式之简单工厂
    WinForm笔记一:文本框只允许输入数字
    ADO.NET笔记(一)XML导入导出和数据库
    winform中文本框的一些案例
    C#中的二进制序列化和Json序列化
    文件流操作(FileStream,StreamReader,StreamWriter)
  • 原文地址:https://www.cnblogs.com/573177885qq/p/4680471.html
Copyright © 2011-2022 走看看