zoukankan      html  css  js  c++  java
  • 1024 Palindromic Number (25 分)

    A number that will be the same when it is written forwards or backwards is known as a Palindromic Number. For example, 1234321 is a palindromic number. All single digit numbers are palindromic numbers.

    Non-palindromic numbers can be paired with palindromic ones via a series of operations. First, the non-palindromic number is reversed and the result is added to the original number. If the result is not a palindromic number, this is repeated until it gives a palindromic number. For example, if we start from 67, we can obtain a palindromic number in 2 steps: 67 + 76 = 143, and 143 + 341 = 484.

    Given any positive integer N, you are supposed to find its paired palindromic number and the number of steps taken to find it.

    Input Specification:

    Each input file contains one test case. Each case consists of two positive numbers N and K, where N (≤) is the initial numer and K (≤) is the maximum number of steps. The numbers are separated by a space.

    Output Specification:

    For each test case, output two numbers, one in each line. The first number is the paired palindromic number of N, and the second number is the number of steps taken to find the palindromic number. If the palindromic number is not found after K steps, just output the number obtained at the Kth step and K instead.

    Sample Input 1:

    67 3
    

    Sample Output 1:

    484
    2
    

    Sample Input 2:

    69 3
    

    Sample Output 2:

    1353
    3

    题目分析:大数加法 把是否进1记录就好了
     1 #include<iostream>
     2 #include<vector>
     3 #include<queue>
     4 #include<stack>
     5 #include<algorithm>
     6 #include<string>
     7 using namespace std;
     8 string Add(string s1, string s2)
     9 {
    10     int flag = 0;
    11     int len = s1.length();
    12     for (int i = len - 1; i >= 0; i--){
    13         int temp = flag+s1[i] - '0' + s2[i] - '0';
    14         if (temp > 9){
    15             s1[i] = (temp % 10) + '0';
    16             flag = 1;
    17         }
    18         else {
    19             s1[i] = temp + '0';
    20             flag = 0;
    21         }
    22     }
    23     if (flag)return '1' + s1;
    24     else
    25         return s1;
    26 }
    27 int main()
    28 {
    29     string N;
    30     int K;
    31     cin >> N >> K;
    32     int i = 0;
    33     for (; i < K; i++){
    34         string s =N;
    35         reverse(s.begin(), s.end());
    36         if (s == N)
    37             break;
    38         else
    39             N = Add(N, s);
    40     }
    41     cout << N << endl << i;
    42 }
    View Code
  • 相关阅读:
    多重背包 HDU2191
    带限制求最小价值的完全背包 HDU1114
    均分背包 HDU1171
    经典01背包问题 HDU2602
    记忆化搜索 POJ1579
    最大递增子序列变形——二维带权值 O(n*n) HDU1069
    最大递增子序列变形——二维 O(n*logn) TOJ4701
    OCJP(1Z0-851) 模拟题分析(六)over
    OCJP(1Z0-851) 模拟题分析(八)over
    OCJP(1Z0-851) 模拟题分析(九)over
  • 原文地址:https://www.cnblogs.com/57one/p/11966933.html
Copyright © 2011-2022 走看看