zoukankan      html  css  js  c++  java
  • 1057 Stack (30分)(树状数组+二分)

    Stack is one of the most fundamental data structures, which is based on the principle of Last In First Out (LIFO). The basic operations include Push (inserting an element onto the top position) and Pop (deleting the top element). Now you are supposed to implement a stack with an extra operation: PeekMedian -- return the median value of all the elements in the stack. With N elements, the median value is defined to be the (-th smallest element if N is even, or (-th if N is odd.

    Input Specification:

    Each input file contains one test case. For each case, the first line contains a positive integer N (≤). Then N lines follow, each contains a command in one of the following 3 formats:

    Push key
    Pop
    PeekMedian
    

    where key is a positive integer no more than 1.

    Output Specification:

    For each Push command, insert key into the stack and output nothing. For each Pop or PeekMedian command, print in a line the corresponding returned value. If the command is invalid, print Invalid instead.

    Sample Input:

    17
    Pop
    PeekMedian
    Push 3
    PeekMedian
    Push 2
    PeekMedian
    Push 1
    PeekMedian
    Pop
    Pop
    Push 5
    Push 4
    PeekMedian
    Pop
    Pop
    Pop
    Pop
    

    Sample Output:

    Invalid
    Invalid
    3
    2
    2
    1
    2
    4
    4
    5
    3
    Invalid

    题目分析:开始就觉得不能用遍历来找中间值 想来想去也没找到什么好办法 看了别人的博客 没想到树状数组还能这么用
    我认为树状数组只是用来记录前缀和的 但换个思路来想 把元素当作数组下标 出现的次数当作该下标对应的值
    树状数组记录了 对应区间的数的个数 不仅让查找方便 增加元素个数也变得方便了
     1 #define _CRT_SECURE_NO_WARNINGS
     2 #include <climits>
     3 #include<iostream>
     4 #include<vector>
     5 #include<queue>
     6 #include<map>
     7 #include<set>
     8 #include<stack>
     9 #include<algorithm>
    10 #include<string>
    11 #include<cmath>
    12 using namespace std;
    13 const int maxn = 100010;
    14 int C[100010];
    15 stack<int> S;
    16 int lowbit(int num)
    17 {
    18     return num & (-num);
    19 }
    20 int getSum(int x)
    21 {
    22     int sum = 0;
    23     while (x)
    24     {
    25         sum += C[x];
    26         x -= lowbit(x);
    27     }
    28     return sum;
    29 }
    30 void Update(int x, int value)
    31 {
    32     while (x<maxn)
    33     {
    34         C[x] += value;
    35         x += lowbit(x);
    36     }
    37 }
    38 void PeekMedian()
    39 {
    40     int left = 1, right = maxn;
    41     int k = (S.size() + 1) / 2;
    42     while (left<right)
    43     {
    44         int mid = (left + right) / 2;
    45         if (getSum(mid)>= k)
    46             right = mid;
    47         else
    48             left = mid+1;
    49     }
    50     cout <<left<< endl;
    51 }
    52 int main()
    53 {
    54     int N;
    55     cin >> N;
    56     for (int i = 0; i < N; i++)
    57     {
    58         string s;
    59         cin >> s;
    60         if (s == "Push")
    61         {
    62             int i;
    63             cin >> i;
    64             S.push(i);
    65             Update(i, 1);
    66         }
    67         else if (s == "Pop")
    68         {
    69             if (!S.size())
    70                 cout << "Invalid" << endl;
    71             else
    72             {
    73                 Update(S.top(), -1);
    74                 cout << S.top()<<endl;
    75                 S.pop();
    76             }
    77         }
    78         else {
    79             if (!S.size())
    80                 cout << "Invalid" << endl;
    81             else
    82                 PeekMedian();
    83         }
    84     }
    85 }
    View Code
  • 相关阅读:
    Intellij IDEA 打开文件tab数量限制的调整
    Mysql处理中文乱码的问题
    MIT算法导论笔记
    算法导论-排序(一)-插入排序、归并排序
    leetcode题解:Search for a Range (已排序数组范围查找)
    leetcode 题解:Merge Sorted Array(两个已排序数组归并)
    leetcode题解:Construct Binary Tree from Inorder and Postorder Traversal(根据中序和后序遍历构造二叉树)
    leetcode题解:Construct Binary Tree from Preorder and Inorder Traversal (根据前序和中序遍历构造二叉树)
    c++11 std::prev、std::next、std::advance与auto 使用
    (转)指针的引用(*&)与指针的指针(**)
  • 原文地址:https://www.cnblogs.com/57one/p/12054072.html
Copyright © 2011-2022 走看看