A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:
- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than or equal to the node's key.
- Both the left and right subtrees must also be binary search trees.
A Complete Binary Tree (CBT) is a tree that is completely filled, with the possible exception of the bottom level, which is filled from left to right.
Now given a sequence of distinct non-negative integer keys, a unique BST can be constructed if it is required that the tree must also be a CBT. You are supposed to output the level order traversal sequence of this BST.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (≤). Then N distinct non-negative integer keys are given in the next line. All the numbers in a line are separated by a space and are no greater than 2000.
Output Specification:
For each test case, print in one line the level order traversal sequence of the corresponding complete binary search tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line.
Sample Input:
10
1 2 3 4 5 6 7 8 9 0
Sample Output:
6 3 8 1 5 7 9 0 2 4
题目分析:刚开始我想的是先把末尾的多余的元素 计入计算根节点的位置 但欠缺考虑到对于k层树来说
若第k层元素大于2的k-1次 我这样的做法就出了问题
只过了2个点(21分) //给分真高
1 #define _CRT_SECURE_NO_WARNINGS 2 #include <climits> 3 #include<iostream> 4 #include<vector> 5 #include<queue> 6 #include<map> 7 #include<set> 8 #include<stack> 9 #include<algorithm> 10 #include<string> 11 #include<cmath> 12 using namespace std; 13 int Array[1010]; 14 int Queue[1010]; 15 void EnQueue(int begin, int end,int pos) //左闭右开 16 { 17 if (begin >= end) 18 return; 19 Queue[pos] = Array[(begin + end) / 2]; 20 EnQueue(begin, (begin + end)/2, 2 * pos + 1); 21 EnQueue((begin + end) / 2 + 1, end, 2 * pos + 2); 22 } 23 int main() 24 { 25 int N; 26 cin >> N; 27 for (int i = 0; i < N; i++) 28 cin >> Array[i]; 29 sort(Array, Array + N); 30 int sum = 1; 31 for (; sum * 2 < N; sum *= 2); 32 int offset = (N - sum)/2; 33 int i = 0; 34 Queue[i] = Array[N / 2 + offset]; //根节点入队 35 //分别递归处理左右 36 EnQueue(0, N / 2 + offset, 2 * i + 1); 37 EnQueue(N / 2 + offset + 1,N,2 * i + 2); 38 for (int i = 0; i < N - 1; i++) 39 cout << Queue[i] << " "; 40 if(N!=0) 41 cout << Queue[N- 1]; 42 return 0; 43 }
参考别人的做法
1 #define _CRT_SECURE_NO_WARNINGS 2 #include <climits> 3 #include<iostream> 4 #include<vector> 5 #include<queue> 6 #include<map> 7 #include<set> 8 #include<stack> 9 #include<algorithm> 10 #include<string> 11 #include<cmath> 12 using namespace std; 13 int Array[1010]; 14 int Queue[1010]; 15 int N; 16 int id; 17 void EnQueue(int root) //左闭右开 18 { 19 if (root >= N) 20 return; 21 EnQueue(2 * root + 1); 22 Queue[root] = Array[id++]; 23 EnQueue(2 * root + 2); 24 } 25 int main() 26 { 27 cin >> N; 28 for (int i = 0; i < N; i++) 29 cin >> Array[i]; 30 sort(Array, Array + N); 31 EnQueue(0); 32 for (int i = 0; i < N - 1; i++) 33 cout << Queue[i] << " "; 34 cout << Queue[N - 1]; 35 return 0; 36 }
来自https://blog.csdn.net/feng_zhiyu/article/details/82219702
果然 很多代码真的是又短又好 虽然原理简单 但体现出的思想正是让我感到震撼