zoukankan      html  css  js  c++  java
  • 第32课 Linux内核链表剖析

    1. Linux内核链表的位置及依赖

    (1)位置:{linux-2.6.39}\includelinuxlist.h

    (2)依赖

      ①#include<linux ypes.h>

      ②#include<linuxstddef.h>

      ③#include<linuxpoison.h>

      ④#include<linuxprefetch.h>

    2. 移植及注意事项

    (1)清除文件间的依赖:剥离依赖文件中与链表实现相关的代码

    (2)清除与平台相关代码(GNU C)

      ①({}) ②typeof ③__builtin_prefetch ④static inline

    【编程实验】Linux内核源码的移植

    //linuxlist.h

    #ifndef _LINUX_LIST_H
    #define _LINUX_LIST_H
    
    //#include <linux/types.h>
    //#include <linux/stddef.h>
    //#include <linux/poison.h>
    //#include <linux/prefetch.h>
    
    /*
     * Simple doubly linked list implementation.
     *
     * Some of the internal functions ("__xxx") are useful when
     * manipulating whole lists rather than single entries, as
     * sometimes we already know the next/prev entries and we can
     * generate better code by using them directly rather than
     * using the generic single-entry routines.
     */
    
    #ifndef offsetof
    #define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)
    #endif
    
    #ifndef container_of
    #define container_of(ptr, type, member) ((type *)((char *)ptr - offsetof(type,member)))
    #endif
    
    #define prefetch(x)  ((void)x)
    #define LIST_POISON1  (NULL)
    #define LIST_POISON2  (NULL)
    
    struct list_head{
        struct list_head *next, *prev;
    };
    
    struct hlist_node{
        struct hlist_node *next, **pprev;
    };
    
    struct hlist_head{
        struct hlist_node *first;
    };
    
    #define LIST_HEAD_INIT(name) { &(name), &(name) }
    
    #define LIST_HEAD(name) 
        struct list_head name = LIST_HEAD_INIT(name)
    
    static void INIT_LIST_HEAD(struct list_head *list)
    {
        list->next = list;
        list->prev = list;
    }
    
    /*
     * Insert a new entry between two known consecutive entries.
     *
     * This is only for internal list manipulation where we know
     * the prev/next entries already!
     */
    #ifndef CONFIG_DEBUG_LIST
    static void __list_add(struct list_head *node,
                      struct list_head *prev,
                      struct list_head *next)
    {
        next->prev = node;
        node->next = next;
        node->prev = prev;
        prev->next = node;
    }
    #else
    extern void __list_add(struct list_head *node,
                      struct list_head *prev,
                      struct list_head *next);
    #endif
    
    /**
     * list_add - add a new entry
     * @node: new entry to be added
     * @head: list head to add it after
     *
     * Insert a new entry after the specified head.
     * This is good for implementing stacks.
     */
    static void list_add(struct list_head *node, struct list_head *head)
    {
        __list_add(node, head, head->next);
    }
    
    
    /**
     * list_add_tail - add a new entry
     * @node: new entry to be added
     * @head: list head to add it before
     *
     * Insert a new entry before the specified head.
     * This is useful for implementing queues.
     */
    static void list_add_tail(struct list_head *node, struct list_head *head)
    {
        __list_add(node, head->prev, head);
    }
    
    /*
     * Delete a list entry by making the prev/next entries
     * point to each other.
     *
     * This is only for internal list manipulation where we know
     * the prev/next entries already!
     */
    static void __list_del(struct list_head * prev, struct list_head * next)
    {
        next->prev = prev;
        prev->next = next;
    }
    
    /**
     * list_del - deletes entry from list.
     * @entry: the element to delete from the list.
     * Note: list_empty() on entry does not return true after this, the entry is
     * in an undefined state.
     */
    #ifndef CONFIG_DEBUG_LIST
    static void __list_del_entry(struct list_head *entry)
    {
        __list_del(entry->prev, entry->next);
    }
    
    static void list_del(struct list_head *entry)
    {
        __list_del(entry->prev, entry->next);
        entry->next = LIST_POISON1;
        entry->prev = LIST_POISON2;
    }
    #else
    extern void __list_del_entry(struct list_head *entry);
    extern void list_del(struct list_head *entry);
    #endif
    
    /**
     * list_replace - replace old entry by new one
     * @old : the element to be replaced
     * @node : the new element to insert
     *
     * If @old was empty, it will be overwritten.
     */
    static void list_replace(struct list_head *old,
                    struct list_head *node)
    {
        node->next = old->next;
        node->next->prev = node;
        node->prev = old->prev;
        node->prev->next = node;
    }
    
    static void list_replace_init(struct list_head *old,
                        struct list_head *node)
    {
        list_replace(old, node);
        INIT_LIST_HEAD(old);
    }
    
    /**
     * list_del_init - deletes entry from list and reinitialize it.
     * @entry: the element to delete from the list.
     */
    static void list_del_init(struct list_head *entry)
    {
        __list_del_entry(entry);
        INIT_LIST_HEAD(entry);
    }
    
    /**
     * list_move - delete from one list and add as another's head
     * @list: the entry to move
     * @head: the head that will precede our entry
     */
    static void list_move(struct list_head *list, struct list_head *head)
    {
        __list_del_entry(list);
        list_add(list, head);
    }
    
    /**
     * list_move_tail - delete from one list and add as another's tail
     * @list: the entry to move
     * @head: the head that will follow our entry
     */
    static void list_move_tail(struct list_head *list,
                      struct list_head *head)
    {
        __list_del_entry(list);
        list_add_tail(list, head);
    }
    
    /**
     * list_is_last - tests whether @list is the last entry in list @head
     * @list: the entry to test
     * @head: the head of the list
     */
    static int list_is_last(const struct list_head *list,
                    const struct list_head *head)
    {
        return list->next == head;
    }
    
    /**
     * list_empty - tests whether a list is empty
     * @head: the list to test.
     */
    static int list_empty(const struct list_head *head)
    {
        return head->next == head;
    }
    
    /**
     * list_empty_careful - tests whether a list is empty and not being modified
     * @head: the list to test
     *
     * Description:
     * tests whether a list is empty _and_ checks that no other CPU might be
     * in the process of modifying either member (next or prev)
     *
     * NOTE: using list_empty_careful() without synchronization
     * can only be safe if the only activity that can happen
     * to the list entry is list_del_init(). Eg. it cannot be used
     * if another CPU could re-list_add() it.
     */
    static int list_empty_careful(const struct list_head *head)
    {
        struct list_head *next = head->next;
        return (next == head) && (next == head->prev);
    }
    
    /**
     * list_rotate_left - rotate the list to the left
     * @head: the head of the list
     */
    static void list_rotate_left(struct list_head *head)
    {
        struct list_head *first;
    
        if (!list_empty(head)) {
            first = head->next;
            list_move_tail(first, head);
        }
    }
    
    /**
     * list_is_singular - tests whether a list has just one entry.
     * @head: the list to test.
     */
    static int list_is_singular(const struct list_head *head)
    {
        return !list_empty(head) && (head->next == head->prev);
    }
    
    static void __list_cut_position(struct list_head *list,
            struct list_head *head, struct list_head *entry)
    {
        struct list_head *new_first = entry->next;
        list->next = head->next;
        list->next->prev = list;
        list->prev = entry;
        entry->next = list;
        head->next = new_first;
        new_first->prev = head;
    }
    
    /**
     * list_cut_position - cut a list into two
     * @list: a new list to add all removed entries
     * @head: a list with entries
     * @entry: an entry within head, could be the head itself
     *    and if so we won't cut the list
     *
     * This helper moves the initial part of @head, up to and
     * including @entry, from @head to @list. You should
     * pass on @entry an element you know is on @head. @list
     * should be an empty list or a list you do not care about
     * losing its data.
     *
     */
    static void list_cut_position(struct list_head *list,
            struct list_head *head, struct list_head *entry)
    {
        if (list_empty(head))
            return;
        if (list_is_singular(head) &&
            (head->next != entry && head != entry))
            return;
        if (entry == head)
            INIT_LIST_HEAD(list);
        else
            __list_cut_position(list, head, entry);
    }
    
    static void __list_splice(const struct list_head *list,
                     struct list_head *prev,
                     struct list_head *next)
    {
        struct list_head *first = list->next;
        struct list_head *last = list->prev;
    
        first->prev = prev;
        prev->next = first;
    
        last->next = next;
        next->prev = last;
    }
    
    /**
     * list_splice - join two lists, this is designed for stacks
     * @list: the new list to add.
     * @head: the place to add it in the first list.
     */
    static void list_splice(const struct list_head *list,
                    struct list_head *head)
    {
        if (!list_empty(list))
            __list_splice(list, head, head->next);
    }
    
    /**
     * list_splice_tail - join two lists, each list being a queue
     * @list: the new list to add.
     * @head: the place to add it in the first list.
     */
    static void list_splice_tail(struct list_head *list,
                    struct list_head *head)
    {
        if (!list_empty(list))
            __list_splice(list, head->prev, head);
    }
    
    /**
     * list_splice_init - join two lists and reinitialise the emptied list.
     * @list: the new list to add.
     * @head: the place to add it in the first list.
     *
     * The list at @list is reinitialised
     */
    static void list_splice_init(struct list_head *list,
                        struct list_head *head)
    {
        if (!list_empty(list)) {
            __list_splice(list, head, head->next);
            INIT_LIST_HEAD(list);
        }
    }
    
    /**
     * list_splice_tail_init - join two lists and reinitialise the emptied list
     * @list: the new list to add.
     * @head: the place to add it in the first list.
     *
     * Each of the lists is a queue.
     * The list at @list is reinitialised
     */
    static void list_splice_tail_init(struct list_head *list,
                         struct list_head *head)
    {
        if (!list_empty(list)) {
            __list_splice(list, head->prev, head);
            INIT_LIST_HEAD(list);
        }
    }
    
    /**
     * list_entry - get the struct for this entry
     * @ptr:    the &struct list_head pointer.
     * @type:    the type of the struct this is embedded in.
     * @member:    the name of the list_struct within the struct.
     */
    #define list_entry(ptr, type, member) 
        container_of(ptr, type, member)
    
    /**
     * list_first_entry - get the first element from a list
     * @ptr:    the list head to take the element from.
     * @type:    the type of the struct this is embedded in.
     * @member:    the name of the list_struct within the struct.
     *
     * Note, that list is expected to be not empty.
     */
    #define list_first_entry(ptr, type, member) 
        list_entry((ptr)->next, type, member)
    
    /**
     * list_for_each    -    iterate over a list
     * @pos:    the &struct list_head to use as a loop cursor.
     * @head:    the head for your list.
     */
    #define list_for_each(pos, head) 
        for (pos = (head)->next; prefetch(pos->next), pos != (head); 
                pos = pos->next)
    
    /**
     * __list_for_each    -    iterate over a list
     * @pos:    the &struct list_head to use as a loop cursor.
     * @head:    the head for your list.
     *
     * This variant differs from list_for_each() in that it's the
     * simplest possible list iteration code, no prefetching is done.
     * Use this for code that knows the list to be very short (empty
     * or 1 entry) most of the time.
     */
    #define __list_for_each(pos, head) 
        for (pos = (head)->next; pos != (head); pos = pos->next)
    
    /**
     * list_for_each_prev    -    iterate over a list backwards
     * @pos:    the &struct list_head to use as a loop cursor.
     * @head:    the head for your list.
     */
    #define list_for_each_prev(pos, head) 
        for (pos = (head)->prev; prefetch(pos->prev), pos != (head); 
                pos = pos->prev)
    
    /**
     * list_for_each_safe - iterate over a list safe against removal of list entry
     * @pos:    the &struct list_head to use as a loop cursor.
     * @n:        another &struct list_head to use as temporary storage
     * @head:    the head for your list.
     */
    #define list_for_each_safe(pos, n, head) 
        for (pos = (head)->next, n = pos->next; pos != (head); 
            pos = n, n = pos->next)
    
    /**
     * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry
     * @pos:    the &struct list_head to use as a loop cursor.
     * @n:        another &struct list_head to use as temporary storage
     * @head:    the head for your list.
     */
    #define list_for_each_prev_safe(pos, n, head) 
        for (pos = (head)->prev, n = pos->prev; 
             prefetch(pos->prev), pos != (head); 
             pos = n, n = pos->prev)
    
    /**
     * list_for_each_entry    -    iterate over list of given type
     * @pos:    the type * to use as a loop cursor.
     * @head:    the head for your list.
     * @member:    the name of the list_struct within the struct.
     */
    #define list_for_each_entry(pos, head, member)                
        for (pos = list_entry((head)->next, typeof(*pos), member);    
             prefetch(pos->member.next), &pos->member != (head);     
             pos = list_entry(pos->member.next, typeof(*pos), member))
    
    /**
     * list_for_each_entry_reverse - iterate backwards over list of given type.
     * @pos:    the type * to use as a loop cursor.
     * @head:    the head for your list.
     * @member:    the name of the list_struct within the struct.
     */
    #define list_for_each_entry_reverse(pos, head, member)            
        for (pos = list_entry((head)->prev, typeof(*pos), member);    
             prefetch(pos->member.prev), &pos->member != (head);     
             pos = list_entry(pos->member.prev, typeof(*pos), member))
    
    /**
     * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue()
     * @pos:    the type * to use as a start point
     * @head:    the head of the list
     * @member:    the name of the list_struct within the struct.
     *
     * Prepares a pos entry for use as a start point in list_for_each_entry_continue().
     */
    #define list_prepare_entry(pos, head, member) 
        ((pos) ? : list_entry(head, typeof(*pos), member))
    
    /**
     * list_for_each_entry_continue - continue iteration over list of given type
     * @pos:    the type * to use as a loop cursor.
     * @head:    the head for your list.
     * @member:    the name of the list_struct within the struct.
     *
     * Continue to iterate over list of given type, continuing after
     * the current position.
     */
    #define list_for_each_entry_continue(pos, head, member)         
        for (pos = list_entry(pos->member.next, typeof(*pos), member);    
             prefetch(pos->member.next), &pos->member != (head);    
             pos = list_entry(pos->member.next, typeof(*pos), member))
    
    /**
     * list_for_each_entry_continue_reverse - iterate backwards from the given point
     * @pos:    the type * to use as a loop cursor.
     * @head:    the head for your list.
     * @member:    the name of the list_struct within the struct.
     *
     * Start to iterate over list of given type backwards, continuing after
     * the current position.
     */
    #define list_for_each_entry_continue_reverse(pos, head, member)        
        for (pos = list_entry(pos->member.prev, typeof(*pos), member);    
             prefetch(pos->member.prev), &pos->member != (head);    
             pos = list_entry(pos->member.prev, typeof(*pos), member))
    
    /**
     * list_for_each_entry_from - iterate over list of given type from the current point
     * @pos:    the type * to use as a loop cursor.
     * @head:    the head for your list.
     * @member:    the name of the list_struct within the struct.
     *
     * Iterate over list of given type, continuing from current position.
     */
    #define list_for_each_entry_from(pos, head, member)             
        for (; prefetch(pos->member.next), &pos->member != (head);    
             pos = list_entry(pos->member.next, typeof(*pos), member))
    
    /**
     * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
     * @pos:    the type * to use as a loop cursor.
     * @n:        another type * to use as temporary storage
     * @head:    the head for your list.
     * @member:    the name of the list_struct within the struct.
     */
    #define list_for_each_entry_safe(pos, n, head, member)            
        for (pos = list_entry((head)->next, typeof(*pos), member),    
            n = list_entry(pos->member.next, typeof(*pos), member);    
             &pos->member != (head);                     
             pos = n, n = list_entry(n->member.next, typeof(*n), member))
    
    /**
     * list_for_each_entry_safe_continue - continue list iteration safe against removal
     * @pos:    the type * to use as a loop cursor.
     * @n:        another type * to use as temporary storage
     * @head:    the head for your list.
     * @member:    the name of the list_struct within the struct.
     *
     * Iterate over list of given type, continuing after current point,
     * safe against removal of list entry.
     */
    #define list_for_each_entry_safe_continue(pos, n, head, member)         
        for (pos = list_entry(pos->member.next, typeof(*pos), member),         
            n = list_entry(pos->member.next, typeof(*pos), member);        
             &pos->member != (head);                        
             pos = n, n = list_entry(n->member.next, typeof(*n), member))
    
    /**
     * list_for_each_entry_safe_from - iterate over list from current point safe against removal
     * @pos:    the type * to use as a loop cursor.
     * @n:        another type * to use as temporary storage
     * @head:    the head for your list.
     * @member:    the name of the list_struct within the struct.
     *
     * Iterate over list of given type from current point, safe against
     * removal of list entry.
     */
    #define list_for_each_entry_safe_from(pos, n, head, member)             
        for (n = list_entry(pos->member.next, typeof(*pos), member);        
             &pos->member != (head);                        
             pos = n, n = list_entry(n->member.next, typeof(*n), member))
    
    /**
     * list_for_each_entry_safe_reverse - iterate backwards over list safe against removal
     * @pos:    the type * to use as a loop cursor.
     * @n:        another type * to use as temporary storage
     * @head:    the head for your list.
     * @member:    the name of the list_struct within the struct.
     *
     * Iterate backwards over list of given type, safe against removal
     * of list entry.
     */
    #define list_for_each_entry_safe_reverse(pos, n, head, member)        
        for (pos = list_entry((head)->prev, typeof(*pos), member),    
            n = list_entry(pos->member.prev, typeof(*pos), member);    
             &pos->member != (head);                     
             pos = n, n = list_entry(n->member.prev, typeof(*n), member))
    
    /**
     * list_safe_reset_next - reset a stale list_for_each_entry_safe loop
     * @pos:    the loop cursor used in the list_for_each_entry_safe loop
     * @n:        temporary storage used in list_for_each_entry_safe
     * @member:    the name of the list_struct within the struct.
     *
     * list_safe_reset_next is not safe to use in general if the list may be
     * modified concurrently (eg. the lock is dropped in the loop body). An
     * exception to this is if the cursor element (pos) is pinned in the list,
     * and list_safe_reset_next is called after re-taking the lock and before
     * completing the current iteration of the loop body.
     */
    #define list_safe_reset_next(pos, n, member)                
        n = list_entry(pos->member.next, typeof(*pos), member)
    
    /*
     * Double linked lists with a single pointer list head.
     * Mostly useful for hash tables where the two pointer list head is
     * too wasteful.
     * You lose the ability to access the tail in O(1).
     */
    
    #define HLIST_HEAD_INIT { .first = NULL }
    #define HLIST_HEAD(name) struct hlist_head name = {  .first = NULL }
    #define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL)
    static void INIT_HLIST_NODE(struct hlist_node *h)
    {
        h->next = NULL;
        h->pprev = NULL;
    }
    
    static int hlist_unhashed(const struct hlist_node *h)
    {
        return !h->pprev;
    }
    
    static int hlist_empty(const struct hlist_head *h)
    {
        return !h->first;
    }
    
    static void __hlist_del(struct hlist_node *n)
    {
        struct hlist_node *next = n->next;
        struct hlist_node **pprev = n->pprev;
        *pprev = next;
        if (next)
            next->pprev = pprev;
    }
    
    static void hlist_del(struct hlist_node *n)
    {
        __hlist_del(n);
        n->next = LIST_POISON1;
        n->pprev = LIST_POISON2;
    }
    
    static void hlist_del_init(struct hlist_node *n)
    {
        if (!hlist_unhashed(n)) {
            __hlist_del(n);
            INIT_HLIST_NODE(n);
        }
    }
    
    static void hlist_add_head(struct hlist_node *n, struct hlist_head *h)
    {
        struct hlist_node *first = h->first;
        n->next = first;
        if (first)
            first->pprev = &n->next;
        h->first = n;
        n->pprev = &h->first;
    }
    
    /* next must be != NULL */
    static void hlist_add_before(struct hlist_node *n,
                        struct hlist_node *next)
    {
        n->pprev = next->pprev;
        n->next = next;
        next->pprev = &n->next;
        *(n->pprev) = n;
    }
    
    static void hlist_add_after(struct hlist_node *n,
                        struct hlist_node *next)
    {
        next->next = n->next;
        n->next = next;
        next->pprev = &n->next;
    
        if(next->next)
            next->next->pprev  = &next->next;
    }
    
    /* after that we'll appear to be on some hlist and hlist_del will work */
    static void hlist_add_fake(struct hlist_node *n)
    {
        n->pprev = &n->next;
    }
    
    /*
     * Move a list from one list head to another. Fixup the pprev
     * reference of the first entry if it exists.
     */
    static void hlist_move_list(struct hlist_head *old,
                       struct hlist_head *node)
    {
        node->first = old->first;
        if (node->first)
            node->first->pprev = &node->first;
        old->first = NULL;
    }
    
    #define hlist_entry(ptr, type, member) container_of(ptr,type,member)
    
    #define hlist_for_each(pos, head) 
        for (pos = (head)->first; pos && ({ prefetch(pos->next); 1; }); 
             pos = pos->next)
    
    #define hlist_for_each_safe(pos, n, head) 
        for (pos = (head)->first; pos && ({ n = pos->next; 1; }); 
             pos = n)
    
    /**
     * hlist_for_each_entry    - iterate over list of given type
     * @tpos:    the type * to use as a loop cursor.
     * @pos:    the &struct hlist_node to use as a loop cursor.
     * @head:    the head for your list.
     * @member:    the name of the hlist_node within the struct.
     */
    #define hlist_for_each_entry(tpos, pos, head, member)             
        for (pos = (head)->first;                     
             pos && ({ prefetch(pos->next); 1;}) &&             
            ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); 
             pos = pos->next)
    
    /**
     * hlist_for_each_entry_continue - iterate over a hlist continuing after current point
     * @tpos:    the type * to use as a loop cursor.
     * @pos:    the &struct hlist_node to use as a loop cursor.
     * @member:    the name of the hlist_node within the struct.
     */
    #define hlist_for_each_entry_continue(tpos, pos, member)         
        for (pos = (pos)->next;                         
             pos && ({ prefetch(pos->next); 1;}) &&             
            ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); 
             pos = pos->next)
    
    /**
     * hlist_for_each_entry_from - iterate over a hlist continuing from current point
     * @tpos:    the type * to use as a loop cursor.
     * @pos:    the &struct hlist_node to use as a loop cursor.
     * @member:    the name of the hlist_node within the struct.
     */
    #define hlist_for_each_entry_from(tpos, pos, member)             
        for (; pos && ({ prefetch(pos->next); 1;}) &&             
            ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); 
             pos = pos->next)
    
    /**
     * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry
     * @tpos:    the type * to use as a loop cursor.
     * @pos:    the &struct hlist_node to use as a loop cursor.
     * @n:        another &struct hlist_node to use as temporary storage
     * @head:    the head for your list.
     * @member:    the name of the hlist_node within the struct.
     */
    #define hlist_for_each_entry_safe(tpos, pos, n, head, member)          
        for (pos = (head)->first;                     
             pos && ({ n = pos->next; 1; }) &&                  
            ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); 
             pos = n)
    
    #endif

    3 .Linux内核链表的实现

    (1)带头节点的双向循环链表,且头节点为表中成员

    (2)头结点的next指针指向首结点

    (3)头结点的prev指针指向尾结点

     

    4. Linux内核链表的结点定义

    (1)结点定义

    struct list_head{
        struct list_head *next, *prev;  //数据域不见了,放在哪里?
    };

    (2)使用链表时自定义链表结点

    struct Node
    {
        struct list_head head;
        Type1 value1; //数据域
        Type2 value2;
        //
    };

    5. Linux内核链表的操作

    (1)创建和初始化

    struct Node
    {
        struct list_head head; //指针域
        int value;  //数据域
    };
    
    int main(void)
    {
        //创建头结点
        struct Node  n = {0};
        struct list_head* list = (struct list_head*)&n;
        
        INIT_LIST_HEAD(list); //初始化
        //...
    }

    (2)插入操作

      ①在链表头部插入:list_add(new, head)

      ②在链表尾部插入:list_add_tail(new, head);

    (3)删除操作

    __list_del(*prev, *next)
    {
        next->prev = prev;
        prev->next = next;
    }
    
    list_del(*entry)
    {
        __list_del(entry-prev, entry-next);
        entry->next = LIST_POISON1; //null
        entry->prev = LIST_POISON2; //null
    }

    (4)遍历操作

      ①正向遍历:list_for_each(pos, head);

      ②逆向遍历:list_for_each_prev(pos, head)

    #define list_for_each(pos, head)    
            for(pos = (head)->next; prefetch(pos->next), pos !=(head); 
            pos = pos->next)
    
    #define list_for_each_prev(pos, head)    
            for(pos = (head)->prev; prefetch(pos->prev), pos !=(head); 
            pos = pos->prev)

    【编程实验】Linux内核链表的使用

    //main.c

    #include <stdio.h>
    #include <malloc.h>
    #include "LinuxList.h"
    
    void demo1()
    {
        //自定义结点类型(含数据域)
        struct Node
        {
            struct list_head head; //指针域放前面
            int value;
        };
    
        struct Node node={0};
        struct list_head* list = (struct list_head*)&node;
        struct list_head* slider = NULL;
        int i = 0;
    
        //初始化链表,形成循环链表
        INIT_LIST_HEAD(list);
    
        printf("Insert begin ...
    ");
    
        //插入4个元素
        for(i=0; i<5; i++){
            struct Node* n = (struct Node*)malloc(sizeof(struct Node));
    
            n->value = i;
    
            list_add_tail((struct list_head*)n, list);
        }
    
        //遍历链表
        list_for_each(slider, list){
            printf("%d
    ", ((struct Node*)slider)->value);
        }
    
        printf("Insert end ...
    ");
    
        //删除值为3的元素
        printf("Delete begin ...
    ");
        list_for_each(slider, list){
            if(((struct Node*)slider)->value == 3){
                list_del(slider);
                free(slider);
                break;
            }
        }
    
        list_for_each(slider, list){
            printf("%d
    ", ((struct Node*)slider)->value);
        }
    
        printf("Delete end ...
    ");
    }
    
    //结点类型中指针域放最后
    void demo2()
    {
        //自定义结点类型(含数据域)
        struct Node
        {
            int value;
            struct list_head head; //指针域放后面
    
        };
    
        struct Node node={0};
        struct list_head* list = (struct list_head*)&node;
        struct list_head* slider = NULL;
        int i = 0;
    
        //初始化链表,形成循环链表
        INIT_LIST_HEAD(list);
    
        printf("Insert begin ...
    ");
    
        //插入4个元素
        for(i=0; i<5; i++){
            struct Node* n = (struct Node*)malloc(sizeof(struct Node));
    
            n->value = i;
    
            list_add_tail(&n->head, list);
        }
    
        //遍历链表(注意,需要用list_entry宏来获取节点的地址)
        list_for_each(slider, list){
            printf("%d
    ", list_entry(slider, struct Node, head)->value);
        }
    
        printf("Insert end ...
    ");
    
        //删除值为3的元素
        printf("Delete begin ...
    ");
        list_for_each(slider, list){
            if(list_entry(slider, struct Node, head)->value == 3){
                list_del(slider);
                free(slider);
                break;
            }
        }
    
        list_for_each(slider, list){
            printf("%d
    ", list_entry(slider, struct Node, head)->value);
        }
    
        printf("Delete end ...
    ");
    }
    int main()
    {
        demo2();
        return 0;
    }

    6. 小结

    (1)Linux内核链表移植时需要剔除依赖以及平台相关代码

    (2)Linux内核链表是带头结点的双向循环链表

    (3)使用Linux内核链表时需要自定义链表结点

      ①将struct list_head作为结点结构体的第一个成员或最后一个成员

      ②struct list_head作为最后一个成员时,需要使用list_entry

      ③list_entry的定义中使用了container_of

  • 相关阅读:
    java后台svg转成png
    Itext2.0.8 和freemarker导出pdf
    使用freemarker生成word、html时图片显示问题
    ITEXT5 Font 'd:SIMSUN.TTC' with 'Identity-H' is not recognized.
    IntelliJ Idea 2017 免费激活方法
    MySQL 索引
    怎样使用nat和桥接方式解决虚拟机联网问题
    【Linux】NAT模式下关于主机ping不通虚拟机的问题
    同一台服务器(电脑)运行多个Tomcat
    [shell基础]——cut命令
  • 原文地址:https://www.cnblogs.com/5iedu/p/7151865.html
Copyright © 2011-2022 走看看