zoukankan      html  css  js  c++  java
  • Balanced Lineup(最简单的线段树题目)

    Time Limit: 5000MS   Memory Limit: 65536K
    Total Submissions: 33389   Accepted: 15665
    Case Time Limit: 2000MS

    Description

    For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

    Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

    Input

    Line 1: Two space-separated integers, N and Q
    Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i 
    Lines N+2..N+Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.

    Output

    Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

    Sample Input

    6 3
    1
    7
    3
    4
    2
    5
    1 5
    4 6
    2 2

    Sample Output

    6
    3
    0

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <cmath>
     5 #include <algorithm>
     6 #include <string>
     7 #include <vector>
     8 #include <stack>
     9 #include <queue>
    10 #include <set>
    11 #include <map>
    12 #include <list>
    13 #include <iomanip>
    14 #include <cstdlib>
    15 #include <sstream>
    16 using namespace std;
    17 typedef long long LL;
    18 const int INF=0x5fffffff;
    19 const double EXP=1e-6;
    20 const int MS=50005;
    21 
    22 int minv,maxv;
    23 struct node
    24 {
    25       int l,r,maxv,minv;
    26       int mid()
    27       {
    28             return (l+r)/2;
    29       }
    30 }nodes[4*MS];
    31 
    32 void creat(int root,int l,int r)
    33 {
    34       nodes[root].l=l;
    35       nodes[root].r=r;
    36       nodes[root].minv=INF;
    37       nodes[root].maxv=-INF;
    38       if(l==r)
    39             return ;
    40       creat(root<<1,l,(l+r)/2);
    41       creat(root<<1|1,(l+r)/2+1,r);
    42 }
    43 
    44 void updata(int root,int pos,int value)
    45 {
    46       if(nodes[root].l==nodes[root].r)
    47       {
    48             nodes[root].minv=nodes[root].maxv=value;
    49             return ;
    50       }
    51       nodes[root].minv=min(nodes[root].minv,value);
    52       nodes[root].maxv=max(nodes[root].maxv,value);
    53       if(pos<=nodes[root].mid())
    54             updata(root<<1,pos,value);
    55       else
    56             updata(root<<1|1,pos,value);
    57 }
    58 
    59 void query(int root,int l,int r)   //注意这里的minv,maxv使用的全局变量,
    60 {                                               //使用引用也可以
    61       if(nodes[root].minv>=minv&&nodes[root].maxv<=maxv)
    62             return ;    //   剪枝
    63       if(nodes[root].l>=l&&nodes[root].r<=r)
    64       {
    65             minv=min(minv,nodes[root].minv);
    66             maxv=max(maxv,nodes[root].maxv);
    67             return ;
    68       }
    69       if(l<=nodes[root].mid())
    70             query(root<<1,l,r);
    71       if(r>nodes[root].mid())
    72             query(root<<1|1,l,r);
    73 }
    74 
    75 int main()
    76 {
    77       int N,Q,x,y;
    78       scanf("%d%d",&N,&Q);
    79       creat(1,1,N);
    80       for(int i=1;i<=N;i++)
    81       {
    82             scanf("%d",&x);
    83             updata(1,i,x);
    84       }
    85       while(Q--)
    86       {
    87             scanf("%d%d",&x,&y);
    88             minv=INF;
    89             maxv=-INF;
    90             query(1,x,y);
    91             printf("%d
    ",maxv-minv);
    92       }
    93       return 0;
    94 }





  • 相关阅读:
    OCS 2007 R2下载资源整理
    Windows Server 2012 R2 WSUS 4.0 加速
    JavaScript入门(三)
    JavaScript入门(一)
    JavaScript入门(二)
    CSS基础
    古董代码
    自我介绍
    Android Activity的加载的模式
    Android 数字签名
  • 原文地址:https://www.cnblogs.com/767355675hutaishi/p/3860832.html
Copyright © 2011-2022 走看看