Mosaic
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 102400/102400 K (Java/Others)
Total Submission(s): 904 Accepted Submission(s): 394
Problem Description
The
God of sheep decides to pixelate some pictures (i.e., change them into
pictures with mosaic). Here's how he is gonna make it: for each picture,
he divides the picture into n x n cells, where each cell is assigned a
color value. Then he chooses a cell, and checks the color values in the L
x L region whose center is at this specific cell. Assuming the maximum
and minimum color values in the region is A and B respectively, he will
replace the color value in the chosen cell with floor((A + B) / 2).
Can you help the God of sheep?
Can you help the God of sheep?
Input
The first line contains an integer T (T ≤ 5) indicating the number of test cases. Then T test cases follow.
Each test case begins with an integer n (5 < n < 800). Then the following n rows describe the picture to pixelate, where each row has n integers representing the original color values. The j-th integer in the i-th row is the color value of cell (i, j) of the picture. Color values are nonnegative integers and will not exceed 1,000,000,000 (10^9).
After the description of the picture, there is an integer Q (Q ≤ 100000 (10^5)), indicating the number of mosaics.
Then Q actions follow: the i-th row gives the i-th replacement made by the God of sheep: xi, yi, Li (1 ≤ xi, yi ≤ n, 1 ≤ Li < 10000, Li is odd). This means the God of sheep will change the color value in (xi, yi) (located at row xi and column yi) according to the Li x Li region as described above. For example, an query (2, 3, 3) means changing the color value of the cell at the second row and the third column according to region (1, 2) (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4). Notice that if the region is not entirely inside the picture, only cells that are both in the region and the picture are considered.
Note that the God of sheep will do the replacement one by one in the order given in the input.��
Each test case begins with an integer n (5 < n < 800). Then the following n rows describe the picture to pixelate, where each row has n integers representing the original color values. The j-th integer in the i-th row is the color value of cell (i, j) of the picture. Color values are nonnegative integers and will not exceed 1,000,000,000 (10^9).
After the description of the picture, there is an integer Q (Q ≤ 100000 (10^5)), indicating the number of mosaics.
Then Q actions follow: the i-th row gives the i-th replacement made by the God of sheep: xi, yi, Li (1 ≤ xi, yi ≤ n, 1 ≤ Li < 10000, Li is odd). This means the God of sheep will change the color value in (xi, yi) (located at row xi and column yi) according to the Li x Li region as described above. For example, an query (2, 3, 3) means changing the color value of the cell at the second row and the third column according to region (1, 2) (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4). Notice that if the region is not entirely inside the picture, only cells that are both in the region and the picture are considered.
Note that the God of sheep will do the replacement one by one in the order given in the input.��
Output
For each test case, print a line "Case #t:"(without quotes, t means the index of the test case) at the beginning.
For each action, print the new color value of the updated cell.
For each action, print the new color value of the updated cell.
Sample Input
1
3
1 2 3
4 5 6
7 8 9
5
2 2 1
3 2 3
1 1 3
1 2 3
2 2 3
Sample Output
Case #1:
5
6
3
4
6
Source
参考binsheng的优化。
1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <cmath> 5 #include <algorithm> 6 #include <string> 7 #include <vector> 8 #include <stack> 9 #include <queue> 10 #include <set> 11 #include <map> 12 #include <list> 13 #include <iomanip> 14 #include <cstdlib> 15 #include <sstream> 16 using namespace std; 17 typedef long long LL; 18 const int INF=0x5fffffff; 19 const double EXP=1e-6; 20 const int MS=801; 21 int leafx[MS],leafy[MS]; 22 int n; 23 struct nodey 24 { 25 int l,r,maxv,minv; 26 int mid() 27 { 28 return (l+r)>>1; 29 } 30 }; 31 32 struct nodex 33 { 34 int l,r; 35 nodey Y[MS<<2]; 36 int mid() 37 { 38 return (l+r)>>1; 39 } 40 void build(int root,int l,int r) 41 { 42 Y[root].l=l; 43 Y[root].r=r; 44 Y[root].maxv=-INF; 45 Y[root].minv=INF; 46 if(l==r) 47 { 48 leafy[l]=root; 49 return ; 50 } 51 build(root<<1,l,(l+r)/2); 52 build(root<<1|1,(l+r)/2+1,r); 53 } 54 55 int query_min(int root,int l,int r) 56 { 57 if(Y[root].l>=l&&Y[root].r<=r) 58 return Y[root].minv; 59 int mid=Y[root].mid(); 60 if(r<=mid) 61 return query_min(root<<1,l,r); 62 else if(l>mid) 63 return query_min(root<<1|1,l,r); 64 else 65 return min(query_min(root<<1,l,mid),query_min(root<<1|1,mid+1,r)); 66 } 67 68 int query_max(int root,int l,int r) 69 { 70 if(Y[root].l>=l&&Y[root].r<=r) 71 return Y[root].maxv; 72 int mid=Y[root].mid(); 73 if(r<=mid) 74 return query_max(root<<1,l,r); 75 else if(l>mid) 76 return query_max(root<<1|1,l,r); 77 else 78 return max(query_max(root<<1,l,mid),query_max(root<<1|1,mid+1,r)); 79 } 80 }X[MS<<2]; 81 82 void build(int root,int l,int r) 83 { 84 X[root].l=l; 85 X[root].r=r; 86 X[root].build(1,1,n); 87 if(l==r) 88 { 89 leafx[l]=root; 90 return ; 91 } 92 build(root<<1,l,(l+r)/2); 93 build(root<<1|1,(l+r)/2+1,r); 94 } 95 96 void updata(int x,int y,int value) 97 { 98 int tx=leafx[x]; 99 int ty=leafy[y]; 100 X[tx].Y[ty].minv=X[tx].Y[ty].maxv=value; 101 // push up 102 for(int i=tx;i;i>>=1) 103 for(int j=ty;j;j>>=1) 104 { 105 if(i==tx&&j==ty) 106 continue; 107 if(j==ty) // is leaf 108 { 109 X[i].Y[j].minv=min(X[i<<1].Y[j].minv,X[i<<1|1].Y[j].minv); 110 X[i].Y[j].maxv=max(X[i<<1].Y[j].maxv,X[i<<1|1].Y[j].maxv); 111 } 112 else 113 { 114 X[i].Y[j].minv=min(X[i].Y[j<<1].minv,X[i].Y[j<<1|1].minv); 115 X[i].Y[j].maxv=max(X[i].Y[j<<1].maxv,X[i].Y[j<<1|1].maxv); 116 } 117 } 118 } 119 120 int query_min(int root,int x1,int x2,int y1,int y2) 121 { 122 if(X[root].l>=x1&&X[root].r<=x2) 123 return X[root].query_min(1,y1,y2); 124 int mid=X[root].mid(); 125 if(x2<=mid) 126 return query_min(root<<1,x1,x2,y1,y2); 127 else if(x1>mid) 128 return query_min(root<<1|1,x1,x2,y1,y2); 129 return min(query_min(root<<1,x1,mid,y1,y2),query_min(root<<1|1,mid+1,x2,y1,y2)); 130 } 131 132 int query_max(int root,int x1,int x2,int y1,int y2) 133 { 134 if(X[root].l>=x1&&X[root].r<=x2) 135 return X[root].query_max(1,y1,y2); 136 int mid=X[root].mid(); 137 if(x2<=mid) 138 return query_max(root<<1,x1,x2,y1,y2); 139 else if(x1>mid) 140 return query_max(root<<1|1,x1,x2,y1,y2); 141 return max(query_max(root<<1,x1,mid,y1,y2),query_max(root<<1|1,mid+1,x2,y1,y2)); 142 } 143 144 int main() 145 { 146 int T,x,y,z,Q; 147 scanf("%d",&T); 148 for(int k=1;k<=T;k++) 149 { 150 scanf("%d",&n); 151 build(1,1,n); 152 for(int i=1;i<=n;i++) 153 for(int j=1;j<=n;j++) 154 { 155 scanf("%d",&x); 156 updata(i,j,x); 157 } 158 scanf("%d",&Q); 159 printf("Case #%d: ",k); 160 while(Q--) 161 { 162 scanf("%d%d%d",&x,&y,&z); 163 int x1=max(x-z/2,1); 164 int x2=min(x+z/2,n); 165 int y1=max(y-z/2,1); 166 int y2=min(y+z/2,n); 167 int maxv=query_max(1,x1,x2,y1,y2); 168 int minv=query_min(1,x1,x2,y1,y2); 169 updata(x,y,(maxv+minv)>>1); 170 printf("%d ",(maxv+minv)>>1); 171 } 172 } 173 return 0; 174 }