zoukankan      html  css  js  c++  java
  • Good subsequence( RMQ+二分)

    Description

    Give you a sequence of n numbers, and a number k you should find the max length of Good subsequence. Good subsequence is a continuous subsequence of the given sequence and its maximum value - minimum value<=k. For example n=5, k=2, the sequence ={5, 4, 2, 3, 1}. The answer is 3, the good subsequence are {4, 2, 3} or {2, 3, 1}.

    Input

    There are several test cases.
    Each test case contains two line. the first line are two numbers indicates n and k (1<=n<=10,000, 1<=k<=1,000,000,000). The second line give the sequence of n numbers a[i] (1<=i<=n, 1<=a[i]<=1,000,000,000).
    The input will finish with the end of file.

    Output

    For each the case, output one integer indicates the answer.

    Sample Input

    5 2
    5 4 2 3 1
    1 1
    1

    Sample Output

    3
    1


     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <cmath>
     5 #include <algorithm>
     6 #include <string>
     7 #include <vector>
     8 #include <set>
     9 #include <map>
    10 #include <queue>
    11 #include <stack>
    12 #include <sstream>
    13 #include <iomanip>
    14 using namespace std;
    15 const int INF=0x4fffffff;
    16 const int EXP=1e-6;
    17 const int MS=10005;
    18 const int MS2=100005;
    19 
    20 int a[MS];
    21 int n,k;
    22 
    23 int minv[MS][15];
    24 int maxv[MS][15];
    25 
    26 void RMQ_init()
    27 {
    28       for(int i=0;i<n;i++)
    29       {
    30             minv[i][0]=a[i];
    31             maxv[i][0]=a[i];
    32       }
    33 
    34       for(int j=1;(1<<j)<=n;j++)
    35       {
    36             for(int i=0;i+(1<<j)-1<n;i++)
    37             {
    38                   minv[i][j]=min(minv[i][j-1],minv[i+(1<<(j-1))][j-1]);
    39                   maxv[i][j]=max(maxv[i][j-1],maxv[i+(1<<(j-1))][j-1]);
    40             }
    41       }
    42 }
    43 
    44 int RMQ(int l,int r)
    45 {
    46       int k=0;
    47       while(1<<(k+1)<=r-l+1)
    48             k++;
    49       return   max(maxv[l][k],maxv[r-(1<<k)+1][k])-min(minv[l][k],minv[r-(1<<k)+1][k]);
    50 }
    51 
    52 int main()
    53 {
    54 
    55       while(scanf("%d%d",&n,&k)!=EOF)
    56       {
    57             for(int i=0;i<n;i++)
    58                   scanf("%d",&a[i]);
    59             RMQ_init();
    60             int ans=0;
    61             for(int i=0;i<n;i++)
    62             {
    63                   int l=i;
    64                   int r=n-1;
    65                   while(l<=r)
    66                   {
    67                         int mid=(l+r)/2;
    68                         int t=RMQ(i,mid);
    69                         if(t>k)
    70                               r=mid-1;
    71                         else
    72                               l=mid+1;
    73                   }
    74                   if(ans<l-i)
    75                         ans=l-i;
    76             }
    77             cout<<ans<<endl;
    78       }
    79       return 0;
    80 }



  • 相关阅读:
    03- CSS进阶
    03-requests使用
    04-scrapy简介
    05-scrapy基本使用
    06-CrawlSpider模板
    07-Request、Response
    03-inotify+rsync sersync lsyncd实时同步服务
    markdown中折叠代码
    02-java基础语法
    01-java简介及环境配置
  • 原文地址:https://www.cnblogs.com/767355675hutaishi/p/4374599.html
Copyright © 2011-2022 走看看