zoukankan      html  css  js  c++  java
  • poj 2299 Ultra-QuickSort

    Description

    In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping two adjacent sequence elements until the sequence is sorted in ascending order. For the input sequence 
    9 1 0 5 4 ,

    Ultra-QuickSort produces the output 
    0 1 4 5 9 .

    Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.

    Input

    The input contains several test cases. Every test case begins with a line that contains a single integer n < 500,000 -- the length of the input sequence. Each of the the following n lines contains a single integer 0 ≤ a[i] ≤ 999,999,999, the i-th input sequence element. Input is terminated by a sequence of length n = 0. This sequence must not be processed.

    Output

    For every input sequence, your program prints a single line containing an integer number op, the minimum number of swap operations necessary to sort the given input sequence.

    Sample Input

    5
    9
    1
    0
    5
    4
    3
    1
    2
    3
    0
    

    Sample Output

    6
    0
    

    Source

     
     
    算法课学过归并排序求逆序数。
    代码:
    #include <iostream>
    #include <cstdio>
    #include <set>
    
    using namespace std;
    typedef long long ll;
    int num[500000];
    ll merge_sort(int *t,int l,int r) {
        if(l >= r) return 0;
        int mid = (l + r) / 2;
        ll d = merge_sort(t,l,mid) + merge_sort(t,mid + 1,r);
        int *temp = new int[r - l + 1];
        int c = 0,i = l,j = mid + 1;
        while(i <= mid || j <= r) {
            if(i <= mid && (t[i] <= t[j] || j > r)) {
                temp[c ++] = t[i ++];
            }
            else if(j <= r && (t[j] < t[i] || i > mid)) {
                temp[c ++] = t[j ++];
                d += mid - i + 1;
            }
        }
        for(int i = l;i <= r;i ++) {
            t[i] = temp[i - l];
        }
        delete [] temp;
        return d;
    }
    int main() {
        int n,d;
        while(~scanf("%d",&n) && n) {
            for(int i = 0;i < n;i ++) {
                scanf("%d",&num[i]);
            }
            printf("%lld
    ",merge_sort(num,0,n - 1));
        }
    }

    耗时不少,其实树状数组好一点,只不过不能直接把数作为下标,数很大,但是个数最多500000,可以接受,可以排序后进行。

    代码:

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    
    using namespace std;
    typedef long long ll;
    typedef pair<int,int> pa;
    pa num[500000];
    ll sum[500001];
    int n;
    inline int lowbit(int x) {
        return x & -x;
    }
    inline void update(int x,int y) {
        while(x <= n) {
            sum[x] += y;
            x += lowbit(x);
        }
    }
    inline int getsum(int x) {
        int ans = 0;
        while(x > 0) {
            ans += sum[x];
            x -= lowbit(x);
        }
        return ans;
    }
    bool cmp(pa a,pa b) {
        if(a.first == b.first) return a.second < b.second;
        return a.first < b.first;
    }
    int main() {
        int d;
        while(~scanf("%d",&n) && n) {
            ll ans = 0;
            for(int i = 0;i < n;i ++) {
                sum[i + 1] = 0;
                scanf("%d",&d);
                num[i] = pa(d,i + 1);
            }
            sort(num,num + n,cmp);
            for(int i = 0;i < n;i ++) {
                ans += getsum(num[i].second);
                update(num[i].second,1);
            }
            printf("%lld
    ",(ll)n * (n - 1) / 2 - ans);
        }
    }
  • 相关阅读:
    【Java学习笔记之二十一】抽象类在Java继承中的用法小结
    【Java学习笔记之二十】final关键字在Java继承中的用法小结
    【Java学习笔记之十九】super在Java继承中的用法小结
    【Java学习笔记之十八】Javadoc注释的用法
    【Java学习笔记之十七】Java中普通代码块,构造代码块,静态代码块区别及代码示例分析
    hdu 5310(贪心)
    poj3268 最短路
    poj1797 最短路
    poj2253 最短路
    poj2387 最短路
  • 原文地址:https://www.cnblogs.com/8023spz/p/10768893.html
Copyright © 2011-2022 走看看