Time limit : 2sec / Memory limit : 256MB
Score : 400 points
Problem Statement
We have a grid with H rows and W columns of squares. Snuke is painting these squares in colors 1, 2, …, N. Here, the following conditions should be satisfied:
- For each i (1≤i≤N), there are exactly ai squares painted in Color i. Here, a1+a2+…+aN=HW.
- For each i (1≤i≤N), the squares painted in Color i are 4-connected. That is, every square painted in Color i can be reached from every square painted in Color i by repeatedly traveling to a horizontally or vertically adjacent square painted in Color i.
Find a way to paint the squares so that the conditions are satisfied. It can be shown that a solution always exists.
Constraints
- 1≤H,W≤100
- 1≤N≤HW
- ai≥1
- a1+a2+…+aN=HW
Input
Input is given from Standard Input in the following format:
H W N a1 a2 … aN
Output
Print one way to paint the squares that satisfies the conditions. Output in the following format:
c11 … c1W : cH1 … cHW
Here, cij is the color of the square at the i-th row from the top and j-th column from the left.
Sample Input 1
Copy
2 2 3 2 1 1
Sample Output 1
Copy
1 1 2 3
Below is an example of an invalid solution:
1 2 3 1
This is because the squares painted in Color 1 are not 4-connected.
Sample Input 2
Copy
3 5 5 1 2 3 4 5
Sample Output 2
Copy
1 4 4 4 3 2 5 4 5 3 2 5 5 5 3
Sample Input 3
Copy
1 1 1 1
Sample Output 3
Copy
1
要求输出一种满足条件的情况,那就一行一行的涂色,涂到最后一个格子紧接着从下一行相邻的格子开始倒着涂,如此进行。
代码:
#include <iostream> #include <cstdlib> #include <cstdio> #include <cstring> #include <algorithm> using namespace std; int h,w,n,num[10000]; int main() { int cnt = 1; scanf("%d%d",&h,&w); scanf("%d",&n); for(int i = 0;i < n;i ++) { scanf("%d",&num[i]); } for(int i = 0;i < h;i ++) { while(!num[cnt - 1]) cnt ++; string s = to_string(cnt); num[cnt - 1] --; for(int j = 1;j < w;j ++) { while(!num[cnt - 1]) cnt ++; s = i % 2 ? (to_string(cnt) + " " + s) : (s + " " + to_string(cnt)); num[cnt - 1] --; } cout<<s<<endl; } return 0; }