zoukankan      html  css  js  c++  java
  • 进阶实验8-2.3 二叉搜索树的最近公共祖先 (30分)

    给定一棵二叉搜索树的先序遍历序列,要求你找出任意两结点的最近公共祖先结点(简称 LCA)。

    输入格式:

    输入的第一行给出两个正整数:待查询的结点对数 M(≤ 1 000)和二叉搜索树中结点个数 N(≤ 10 000)。随后一行给出 N 个不同的整数,为二叉搜索树的先序遍历序列。最后 M 行,每行给出一对整数键值 U 和 V。所有键值都在整型int范围内。

    输出格式:

    对每一对给定的 U 和 V,如果找到 A 是它们的最近公共祖先结点的键值,则在一行中输出 LCA of U and V is A.。但如果 U 和 V 中的一个结点是另一个结点的祖先,则在一行中输出 X is an ancestor of Y.,其中 X 是那个祖先结点的键值,Y 是另一个键值。如果 二叉搜索树中找不到以 U 或 V 为键值的结点,则输出 ERROR: U is not found. 或者 ERROR: V is not found.,或者 ERROR: U and V are not found.

    输入样例:

    6 8
    6 3 1 2 5 4 8 7
    2 5
    8 7
    1 9
    12 -3
    0 8
    99 99
    
     

    输出样例:

    LCA of 2 and 5 is 3.
    8 is an ancestor of 7.
    ERROR: 9 is not found.
    ERROR: 12 and -3 are not found.
    ERROR: 0 is not found.
    ERROR: 99 and 99 are not found.

    代码:
    #include <iostream>
    #include <cstdio>
    #include <algorithm>
    #include <map>
    using namespace std;
    struct tree
    {
        int Data,Height;
        tree *Last,*Left,*Right;
    }*head;
    int q[10001],z[10001],m,n;
    map<int,tree *> mp;
    tree *createNode(int d,int h)
    {
        tree *p = new tree();
        p -> Data = d;
        mp[d] = p;
        p -> Height = h;
        p -> Last = p -> Left = p -> Right = NULL;
        return p;
    }
    tree *createTree(int ql,int qr,int zl,int zr,int h)
    {
        tree *p = createNode(q[ql],h);
        for(int i = zl;i <= zr;i ++)
        {
            if(z[i] == q[ql])
            {
                if(i > zl)p -> Left = createTree(ql + 1,ql + i - zl,zl,i - 1,h + 1),p -> Left -> Last = p;
                if(i < zr)p -> Right = createTree(ql + i - zl + 1,qr,i + 1,zr,h + 1),p -> Right -> Last = p;
                break;
            }
        }
        return p;
    }
    tree *createTre(int l,int r,int h)
    {
        tree *p = createNode(q[l],h);
        for(int i = l + 1;i <= r + 1;i ++)
        {
            if(i == r + 1 || q[i] >= q[l])
            {
                if(i > l + 1)p -> Left = createTre(l + 1,i - 1,h + 1),p -> Left -> Last = p;
                if(r >= i)p -> Right = createTre(i,r,h + 1),p -> Right -> Last = p;
                return p;
            }
        }
    }
    void check(int a,int b)
    {
        if(mp[a] == NULL && mp[b] == NULL)printf("ERROR: %d and %d are not found.
    ",a,b);
        else if(mp[a] == NULL)printf("ERROR: %d is not found.
    ",a);
        else if(mp[b] == NULL)printf("ERROR: %d is not found.
    ",b);
        else
        {
            tree *t1 = mp[a],*t2 = mp[b];
            while(t1 -> Height != t2 -> Height)
            {
                if(t1 -> Height > t2 -> Height)t1 = t1 -> Last;
                else t2 = t2 -> Last;
            }
            if(t1 == t2)
            {
                printf("%d is an ancestor of %d.
    ",t1 -> Data,a == t1 -> Data ? b : a);
                return;
            }
            t1 = t1 -> Last;
            t2 = t2 -> Last;
            while(t1 != t2)
            {
                t1 = t1 -> Last;
                t2 = t2 -> Last;
            }
            printf("LCA of %d and %d is %d.
    ",a,b,t1 -> Data);
        }
    }
    int main()
    {
        int a,b;
        scanf("%d%d",&m,&n);
        for(int i = 0;i < n;i ++)
        {
            scanf("%d",&q[i]);
        }
        head = createTre(0,n - 1,0);
        for(int i = 0;i < m;i ++)
        {
            scanf("%d%d",&a,&b);
            check(a,b);
        }
    }
  • 相关阅读:
    币圈寒冬,过去两周内全球约60万矿商关机
    币圈人警惕!5大错误足以摧毁你的一切
    Doctype作用?标准模式与兼容模式各有什么区别?
    递归
    anguments
    fixed 和 absolute 定位的区别
    SublimeText 自带格式化代码功能
    css布局-双飞翼布局
    CSS布局-圣杯布局
    品字布局
  • 原文地址:https://www.cnblogs.com/8023spz/p/12303477.html
Copyright © 2011-2022 走看看