zoukankan      html  css  js  c++  java
  • 1053 Path of Equal Weight (30)(30 分)

    Given a non-empty tree with root R, and with weight W~i~ assigned to each tree node T~i~. The weight of a path from R to L is defined to be the sum of the weights of all the nodes along the path from R to any leaf node L.

    Now given any weighted tree, you are supposed to find all the paths with their weights equal to a given number. For example, let's consider the tree showed in Figure 1: for each node, the upper number is the node ID which is a two-digit number, and the lower number is the weight of that node. Suppose that the given number is 24, then there exists 4 different paths which have the same given weight: {10 5 2 7}, {10 4 10}, {10 3 3 6 2} and {10 3 3 6 2}, which correspond to the red edges in Figure 1.

    Figure 1

    Input Specification:

    Each input file contains one test case. Each case starts with a line containing 0 < N <= 100, the number of nodes in a tree, M (< N), the number of non-leaf nodes, and 0 < S < 2^30^, the given weight number. The next line contains N positive numbers where W~i~ (&lt1000) corresponds to the tree node T~i~. Then M lines follow, each in the format:

    ID K ID[1] ID[2] ... ID[K]
    

    where ID is a two-digit number representing a given non-leaf node, K is the number of its children, followed by a sequence of two-digit ID's of its children. For the sake of simplicity, let us fix the root ID to be 00.

    Output Specification:

    For each test case, print all the paths with weight S in non-increasing order. Each path occupies a line with printed weights from the root to the leaf in order. All the numbers must be separated by a space with no extra space at the end of the line.

    Note: sequence {A~1~, A~2~, ..., A~n~} is said to be greater than sequence {B~1~, B~2~, ..., B~m~} if there exists 1 <= k < min{n, m} such that A~i~ = B~i~ for i=1, ... k, and A~k+1~ > B~k+1~.

    Sample Input:

    20 9 24
    10 2 4 3 5 10 2 18 9 7 2 2 1 3 12 1 8 6 2 2
    00 4 01 02 03 04
    02 1 05
    04 2 06 07
    03 3 11 12 13
    06 1 09
    07 2 08 10
    16 1 15
    13 3 14 16 17
    17 2 18 19
    

    Sample Output:

    10 5 2 7
    10 4 10
    10 3 3 6 2
    10 3 3 6 2
    

    排序是按权值,不是结点编号。
    代码:
    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <vector>
    #include <algorithm>
    #include <map>
    using namespace std;
    int n,m,s,id,k,d;
    int w[101],f[101],sw[101],noleaf[101],p;
    vector<int> path[101];
    void getpath(int t) {///记录到叶节点的路径 和 总权值和
        if(f[t] != -1) {///父节点存在
            getpath(f[t]);
            sw[t] = w[t] + sw[f[t]];
        }
        else sw[t] = w[t];
        path[p].push_back(w[t]);
    }
    int main() {
        scanf("%d%d%d",&n,&m,&s);
        for(int i = 0;i < n;i ++) {
            scanf("%d",&w[i]);
            f[i] = -1;
        }
        for(int i = 0;i < m;i ++) {
            scanf("%d%d",&id,&k);
            noleaf[id] = 1;
            for(int j = 0;j < k;j ++) {
                scanf("%d",&d);
                f[d] = id;
            }
        }
        for(int i = 0;i < n;i ++) {
            if(noleaf[i])continue;
            getpath(i);
            if(sw[i] == s) {
                p ++;
            }
            else {
                path[p].clear();
            }
        }
        sort(path,path + p);
        for(int i = p - 1;i >= 0;i --) {
            for(int j = 0;j < path[i].size();j ++) {
                if(j)putchar(' ');
                printf("%d",path[i][j]);
            }
            putchar('
    ');
        }
    }
  • 相关阅读:
    使用powerdesigner导入sql脚本,生成物理模型
    深入理解[代理模式]原理与技术
    8、Dockerfile介绍和最佳实践
    7、Docker监控方案(cAdvisor+InfluxDB+Grafana)
    6、Docker图形化管理(Portainer)
    5、Docker网络配置(单机)
    4、Docker数据管理
    html二
    html
    IO多路复用,协程,
  • 原文地址:https://www.cnblogs.com/8023spz/p/9294130.html
Copyright © 2011-2022 走看看