zoukankan      html  css  js  c++  java
  • 稀疏自动编码之练习

    从10幅图像中采样出10000幅小图像块,每个小图像块大小是8*8,利用采样出的图像作为样本学习,利用LBFGS进行优化.

    下面是对10幅图像白化之后的结果:

    train.m

    %% CS294A/CS294W Programming Assignment Starter Code
    
    %  Instructions
    %  ------------
    % 
    %  This file contains code that helps you get started on the
    %  programming assignment. You will need to complete the code in sampleIMAGES.m,
    %  sparseAutoencoderCost.m and computeNumericalGradient.m. 
    %  For the purpose of completing the assignment, you do not need to
    %  change the code in this file. 
    %
    %%======================================================================
    %% STEP 0: Here we provide the relevant parameters values that will
    %  allow your sparse autoencoder to get good filters; you do not need to 
    %  change the parameters below.
    clear all;clc;
    visibleSize = 8*8;   % number of input units 
    hiddenSize = 25;     % number of hidden units 
    sparsityParam = 0.01;   % desired average activation of the hidden units.
                         % (This was denoted by the Greek alphabet rho, which looks like a lower-case "p",
                 %  in the lecture notes). 
    lambda = 0.0001;     % weight decay parameter       
    beta = 3;            % weight of sparsity penalty term       
    
    %%======================================================================
    %% STEP 1: Implement sampleIMAGES
    %
    %  After implementing sampleIMAGES, the display_network command should
    %  display a random sample of 200 patches from the dataset
    
    patches = sampleIMAGES;
    display_network(patches(:,randi(size(patches,2),200,1)),8);
    
    
    %  Obtain random parameters theta
    theta = initializeParameters(hiddenSize, visibleSize);
    
    %%======================================================================
    %% STEP 2: Implement sparseAutoencoderCost
    %
    %  You can implement all of the components (squared error cost, weight decay term,
    %  sparsity penalty) in the cost function at once, but it may be easier to do 
    %  it step-by-step and run gradient checking (see STEP 3) after each step.  We 
    %  suggest implementing the sparseAutoencoderCost function using the following steps:
    %
    %  (a) Implement forward propagation in your neural network, and implement the 
    %      squared error term of the cost function.  Implement backpropagation to 
    %      compute the derivatives.   Then (using lambda=beta=0), run Gradient Checking 
    %      to verify that the calculations corresponding to the squared error cost 
    %      term are correct.
    %
    %  (b) Add in the weight decay term (in both the cost function and the derivative
    %      calculations), then re-run Gradient Checking to verify correctness. 
    %
    %  (c) Add in the sparsity penalty term, then re-run Gradient Checking to 
    %      verify correctness.
    %
    %  Feel free to change the training settings when debugging your
    %  code.  (For example, reducing the training set size or 
    %  number of hidden units may make your code run faster; and setting beta 
    %  and/or lambda to zero may be helpful for debugging.)  However, in your 
    %  final submission of the visualized weights, please use parameters we 
    %  gave in Step 0 above.
    
    [cost, grad] = sparseAutoencoderCost(theta, visibleSize, hiddenSize, lambda, ...
                                         sparsityParam, beta, patches);
    
    %%======================================================================
    %% STEP 3: Gradient Checking
    %
    % Hint: If you are debugging your code, performing gradient checking on smaller models 
    % and smaller training sets (e.g., using only 10 training examples and 1-2 hidden 
    % units) may speed things up.
    
    % First, lets make sure your numerical gradient computation is correct for a
    % simple function.  After you have implemented computeNumericalGradient.m,
    % run the following: 
    checkNumericalGradient();
    
    % Now we can use it to check your cost function and derivative calculations
    % for the sparse autoencoder.  
    numgrad = computeNumericalGradient( @(x) sparseAutoencoderCost(x, visibleSize, ...
                                        hiddenSize, lambda,sparsityParam,...
                                        beta,patches), theta);
    
    % Use this to visually compare the gradients side by side
    disp([numgrad grad]); 
    
    % Compare numerically computed gradients with the ones obtained from backpropagation
    diff = norm(numgrad-grad)/norm(numgrad+grad);
    disp(diff); % Should be small. In our implementation, these values are
                % usually less than 1e-9.
    
                % When you got this working, Congratulations!!! 
    
    %%======================================================================
    %% STEP 4: After verifying that your implementation of
    %  sparseAutoencoderCost is correct, You can start training your sparse
    %  autoencoder with minFunc (L-BFGS).
    
    %  Randomly initialize the parameters
    theta = initializeParameters(hiddenSize, visibleSize);
    
    %  Use minFunc to minimize the function
    addpath minFunc/
    options.Method = 'lbfgs'; % Here, we use L-BFGS to optimize our cost
                              % function. Generally, for minFunc to work, you
                              % need a function pointer with two outputs: the
                              % function value and the gradient. In our problem,
                              % sparseAutoencoderCost.m satisfies this.
    options.maxIter = 400;      % Maximum number of iterations of L-BFGS to run 
    options.display = 'on';
    
    
    [opttheta, cost] = minFunc( @(p) sparseAutoencoderCost(p, ...
                                       visibleSize, hiddenSize, ...
                                       lambda, sparsityParam, ...
                                       beta, patches), ...
                                  theta, options);
    
    %%======================================================================
    %% STEP 5: Visualization 
    
    W1 = reshape(opttheta(1:hiddenSize*visibleSize), hiddenSize, visibleSize);
    display_network(W1', 12); 
    
    print -djpeg weights.jpg   % save the visualization to a file 

    sampleIMAGES.m,进行图像采集

     

    function patches = sampleIMAGES()
    % sampleIMAGES
    % Returns 10000 patches for training
    
    load IMAGES;    % load images from disk 
    % figure;
    % imagesc(IMAGES(:,:,6));
    % colormap gray;
    patchsize = 8;  % we'll use 8x8 patches 
    numpatches = 10000;
    
    % Initialize patches with zeros.  Your code will fill in this matrix--one
    % column per patch, 10000 columns. 
    patches = zeros(patchsize*patchsize, numpatches);
    
    %% ---------- YOUR CODE HERE --------------------------------------
    %  Instructions: Fill in the variable called "patches" using data 
    %  from IMAGES.  
    %  
    %  IMAGES is a 3D array containing 10 images
    %  For instance, IMAGES(:,:,6) is a 512x512 array containing the 6th image,
    %  and you can type "imagesc(IMAGES(:,:,6)), colormap gray;" to visualize
    %  it. (The contrast on these images look a bit off because they have
    %  been preprocessed using using "whitening."  See the lecture notes for
    %  more details.) As a second example, IMAGES(21:30,21:30,1) is an image
    %  patch corresponding to the pixels in the block (21,21) to (30,30) of
    %  Image 1
    [m,n] = size(IMAGES(:,:,1));
    for i = 1:10
        image = IMAGES(:, :, i);
        for j = 1:1000
            row_id     = randi([1 (m - patchsize + 1)]);
            column_id  = randi([1 (n - patchsize + 1)]);
            patches(:,(i-1)*1000+j) = reshape(image(row_id:(row_id+patchsize-1), column_id:(column_id+patchsize-1)),...
                patchsize*patchsize, 1);
        end
    end
    %% ---------------------------------------------------------------
    % For the autoencoder to work well we need to normalize the data
    % Specifically, since the output of the network is bounded between [0,1]
    % (due to the sigmoid activation function), we have to make sure 
    % the range of pixel values is also bounded between [0,1]
    patches = normalizeData(patches);
    
    end
    
    
    %% ---------------------------------------------------------------
    function patches = normalizeData(patches)
    
    % Squash data to [0.1, 0.9] since we use sigmoid as the activation
    % function in the output layer
    
    % Remove DC (mean of images). 
    patches = bsxfun(@minus, patches, mean(patches));
    
    % Truncate to +/-3 standard deviations and scale to -1 to 1
    pstd = 3 * std(patches(:));
    patches = max(min(patches, pstd), -pstd) / pstd;
    
    % Rescale from [-1,1] to [0.1,0.9]
    patches = (patches + 1) * 0.4 + 0.1;
    
    end
    function [cost,grad] = sparseAutoencoderCost(theta, visibleSize, hiddenSize, ...
                                                 lambda, sparsityParam, beta, data)
    
    % visibleSize: the number of input units (probably 64) 
    % hiddenSize: the number of hidden units (probably 25) 
    % lambda: weight decay parameter
    % sparsityParam: The desired average activation for the hidden units (denoted in the lecture
    %                           notes by the greek alphabet rho, which looks like a lower-case "p").
    % beta: weight of sparsity penalty term
    % data: Our 64x10000 matrix containing the training data.  So, data(:,i) is the i-th training example. 
      
    % The input theta is a vector (because minFunc expects the parameters to be a vector). 
    % We first convert theta to the (W1, W2, b1, b2) matrix/vector format, so that this 
    % follows the notation convention of the lecture notes. 
    
    W1 = reshape(theta(1:hiddenSize*visibleSize), hiddenSize, visibleSize);
    W2 = reshape(theta(hiddenSize*visibleSize+1:2*hiddenSize*visibleSize), visibleSize, hiddenSize);
    b1 = theta(2*hiddenSize*visibleSize+1:2*hiddenSize*visibleSize+hiddenSize);
    b2 = theta(2*hiddenSize*visibleSize+hiddenSize+1:end);
    
    % Cost and gradient variables (your code needs to compute these values). 
    % Here, we initialize them to zeros. 
    cost = 0;
    W1grad = zeros(size(W1)); 
    W2grad = zeros(size(W2));
    b1grad = zeros(size(b1)); 
    b2grad = zeros(size(b2));
    
    %% ---------- YOUR CODE HERE --------------------------------------
    %  Instructions: Compute the cost/optimization objective J_sparse(W,b) for the Sparse Autoencoder,
    %                and the corresponding gradients W1grad, W2grad, b1grad, b2grad.
    %
    % W1grad, W2grad, b1grad and b2grad should be computed using backpropagation.
    % Note that W1grad has the same dimensions as W1, b1grad has the same dimensions
    % as b1, etc.  Your code should set W1grad to be the partial derivative of J_sparse(W,b) with
    % respect to W1.  I.e., W1grad(i,j) should be the partial derivative of J_sparse(W,b) 
    % with respect to the input parameter W1(i,j).  Thus, W1grad should be equal to the term 
    % [(1/m) Delta W^{(1)} + lambda W^{(1)}] in the last block of pseudo-code in Section 2.2 
    % of the lecture notes (and similarly for W2grad, b1grad, b2grad).
    % 
    % Stated differently, if we were using batch gradient descent to optimize the parameters,
    % the gradient descent update to W1 would be W1 := W1 - alpha * W1grad, and similarly for W2, b1, b2. 
    % 
    Jcost = 0;   % 预测误差项
    Jweight = 0; % 权重衰减项
    Jsparse = 0; % 稀疏惩罚项   
    [n,m] = size(data); %m是样本个数,n是样本特征数
    
    %前向传播计算神经网络每个神经元的激活值
    Z2 = W1 * data + repmat(b1, 1, m); %b1扩展成1行m列,因为对每个样本的每个隐单元的激活值都要加上偏置项
    a2 = sigmoid(Z2);
    Z3 = W2 * a2 + repmat(b2, 1, m); 
    a3 = sigmoid(Z3);
    
    %计算预测产生的误差项
    Jcost = (0.5 / m) * sum(sum((a3 - data).^2));
    
    %计算权重衰减项
    Jweight = 0.5 * (sum(sum(W1.^2)) + sum(sum(W2.^2)));
    
    %计算稀疏惩罚项
    rho = (1 / m) .* sum(a2, 2);
    Jsparse = sum(sparsityParam .* log(sparsityParam ./ rho) + ...
            (1- sparsityParam) .* log((1- sparsityParam) ./ (1 - rho)));
    %代价函数
    cost = Jcost + lambda * Jweight + beta * Jsparse;
    
    %反向传播求出每个节点的误差
    d3 = -(data - a3) .* (sigmoid(Z3) .* (1 - sigmoid(Z3)));%注意sigmoid函数的求导f(1-f)
    sparseterm = beta * (-sparsityParam ./ rho + ...
                (1- sparsityParam) ./ (1 - rho)); %稀疏项导数
    d2 = (W2' * d3 + repmat(sparseterm,1,m)).*(sigmoid(Z2) .* (1 - sigmoid(Z2)));
    
    %计算W1grad
    W1grad = W1grad + d2 * data';
    W1grad = (1/m) * W1grad + lambda * W1;
    
    %计算W2grad  
    W2grad = W2grad+d3*a2';
    W2grad = (1/m) * W2grad + lambda * W2;
    
    %计算b1grad 
    b1grad = b1grad+sum(d2,2);
    b1grad = (1/m)*b1grad;%注意b的偏导是一个向量,所以这里应该把每一行的值累加起来
    
    %计算b2grad 
    b2grad = b2grad+sum(d3,2);
    b2grad = (1/m)*b2grad;
    
    %-------------------------------------------------------------------
    % After computing the cost and gradient, we will convert the gradients back
    % to a vector format (suitable for minFunc).  Specifically, we will unroll
    % your gradient matrices into a vector.
    
    grad = [W1grad(:) ; W2grad(:) ; b1grad(:) ; b2grad(:)];
    
    end
    
    %-------------------------------------------------------------------
    % Here's an implementation of the sigmoid function, which you may find useful
    % in your computation of the costs and the gradients.  This inputs a (row or
    % column) vector (say (z1, z2, z3)) and returns (f(z1), f(z2), f(z3)). 
    
    function sigm = sigmoid(x)
      
        sigm = 1 ./ (1 + exp(-x));
    end
    function numgrad = computeNumericalGradient(J, theta)
    % numgrad = computeNumericalGradient(J, theta)
    % theta: a vector of parameters
    % J: a function that outputs a real-number. Calling y = J(theta) will return the
    % function value at theta. 
      
    % Initialize numgrad with zeros
    numgrad = zeros(size(theta));
    
    %% ---------- YOUR CODE HERE --------------------------------------
    % Instructions: 
    % Implement numerical gradient checking, and return the result in numgrad.  
    % (See Section 2.3 of the lecture notes.)
    % You should write code so that numgrad(i) is (the numerical approximation to) the 
    % partial derivative of J with respect to the i-th input argument, evaluated at theta.  
    % I.e., numgrad(i) should be the (approximately) the partial derivative of J with 
    % respect to theta(i).
    %                
    % Hint: You will probably want to compute the elements of numgrad one at a time. 
    epsilon = 1e-4;
    n = size(theta,1);
    E = eye(n);
    for i = 1:n
        delta = E(:,i)*epsilon;
        numgrad(i) = (J(theta+delta)-J(theta-delta))/(epsilon*2.0);
    end
    
    
    %% ---------------------------------------------------------------
    end
    function [] = checkNumericalGradient()
    % This code can be used to check your numerical gradient implementation 
    % in computeNumericalGradient.m
    % It analytically evaluates the gradient of a very simple function called
    % simpleQuadraticFunction (see below) and compares the result with your numerical
    % solution. Your numerical gradient implementation is incorrect if
    % your numerical solution deviates too much from the analytical solution.
      
    % Evaluate the function and gradient at x = [4; 10]; (Here, x is a 2d vector.)
    x = [4; 10];
    [value, grad] = simpleQuadraticFunction(x);
    
    % Use your code to numerically compute the gradient of simpleQuadraticFunction at x.
    % (The notation "@simpleQuadraticFunction" denotes a pointer to a function.)
    numgrad = computeNumericalGradient(@simpleQuadraticFunction, x);
    
    % Visually examine the two gradient computations.  The two columns
    % you get should be very similar. 
    disp([numgrad grad]);
    fprintf('The above two columns you get should be very similar.
    (Left-Your Numerical Gradient, Right-Analytical Gradient)
    
    ');
    
    % Evaluate the norm of the difference between two solutions.  
    % If you have a correct implementation, and assuming you used EPSILON = 0.0001 
    % in computeNumericalGradient.m, then diff below should be 2.1452e-12 
    diff = norm(numgrad-grad)/norm(numgrad+grad);
    disp(diff); 
    fprintf('Norm of the difference between numerical and analytical gradient (should be < 1e-9)
    
    ');
    end
    
    
      
    function [value,grad] = simpleQuadraticFunction(x)
    % this function accepts a 2D vector as input. 
    % Its outputs are:
    %   value: h(x1, x2) = x1^2 + 3*x1*x2
    %   grad: A 2x1 vector that gives the partial derivatives of h with respect to x1 and x2 
    % Note that when we pass @simpleQuadraticFunction(x) to computeNumericalGradients, we're assuming
    % that computeNumericalGradients will use only the first returned value of this function.
    
    value = x(1)^2 + 3*x(1)*x(2);
    
    grad = zeros(2, 1);
    grad(1)  = 2*x(1) + 3*x(2);
    grad(2)  = 3*x(1);
    
    end
    function [h, array] = display_network(A, opt_normalize, opt_graycolor, cols, opt_colmajor)
    % This function visualizes filters in matrix A. Each column of A is a
    % filter. We will reshape each column into a square image and visualizes
    % on each cell of the visualization panel. 
    % All other parameters are optional, usually you do not need to worry
    % about it.
    % opt_normalize: whether we need to normalize the filter so that all of
    % them can have similar contrast. Default value is true.
    % opt_graycolor: whether we use gray as the heat map. Default is true.
    % cols: how many columns are there in the display. Default value is the
    % squareroot of the number of columns in A.
    % opt_colmajor: you can switch convention to row major for A. In that
    % case, each row of A is a filter. Default value is false.
    warning off all
    
    if ~exist('opt_normalize', 'var') || isempty(opt_normalize)
        opt_normalize= true;
    end
    
    if ~exist('opt_graycolor', 'var') || isempty(opt_graycolor)
        opt_graycolor= true;
    end
    
    if ~exist('opt_colmajor', 'var') || isempty(opt_colmajor)
        opt_colmajor = false;
    end
    
    % rescale
    A = A - mean(A(:));
    
    if opt_graycolor, colormap(gray); end
    
    % compute rows, cols
    [L M]=size(A);
    sz=sqrt(L);
    buf=1;
    if ~exist('cols', 'var')
        if floor(sqrt(M))^2 ~= M
            n=ceil(sqrt(M));
            while mod(M, n)~=0 && n<1.2*sqrt(M), n=n+1; end
            m=ceil(M/n);
        else
            n=sqrt(M);
            m=n;
        end
    else
        n = cols;
        m = ceil(M/n);
    end
    
    array=-ones(buf+m*(sz+buf),buf+n*(sz+buf));
    
    if ~opt_graycolor
        array = 0.1.* array;
    end
    
    
    if ~opt_colmajor
        k=1;
        for i=1:m
            for j=1:n
                if k>M, 
                    continue; 
                end
                clim=max(abs(A(:,k)));
                if opt_normalize
                    array(buf+(i-1)*(sz+buf)+(1:sz),buf+(j-1)*(sz+buf)+(1:sz))=reshape(A(:,k),sz,sz)/clim;
                else
                    array(buf+(i-1)*(sz+buf)+(1:sz),buf+(j-1)*(sz+buf)+(1:sz))=reshape(A(:,k),sz,sz)/max(abs(A(:)));
                end
                k=k+1;
            end
        end
    else
        k=1;
        for j=1:n
            for i=1:m
                if k>M, 
                    continue; 
                end
                clim=max(abs(A(:,k)));
                if opt_normalize
                    array(buf+(i-1)*(sz+buf)+(1:sz),buf+(j-1)*(sz+buf)+(1:sz))=reshape(A(:,k),sz,sz)/clim;
                else
                    array(buf+(i-1)*(sz+buf)+(1:sz),buf+(j-1)*(sz+buf)+(1:sz))=reshape(A(:,k),sz,sz);
                end
                k=k+1;
            end
        end
    end
    
    if opt_graycolor
        h=imagesc(array,'EraseMode','none',[-1 1]);
    else
        h=imagesc(array,'EraseMode','none',[-1 1]);
    end
    axis image off
    
    drawnow;
    
    warning on all

    进行梯度检验,两种不同的方式计算出的梯度相差 7.2299e-11,远小于1e-9.

    随机展示出所有采样图像中的200幅:

    本程序主要耗时间的地方是梯度检验,大约4-5分钟.

    最终学习出的权重可视化结果如下:

     

  • 相关阅读:
    Java学习62
    Java学习61
    Maven3种打包方式之一maven-assembly-plugin的使用
    sftp 上传下载 命令介绍
    JMock+Junit4结合完成TDD实例
    UML类图中类与类的四种关系图解
    接口之间的多继承
    Linux中在当前目录下查找某个文件
    .gitignore与exclude
    pro git
  • 原文地址:https://www.cnblogs.com/90zeng/p/Autoencoders_and_Sparsity_exercise.html
Copyright © 2011-2022 走看看