zoukankan      html  css  js  c++  java
  • 深度网络实现手写体识别

    基于自动编码机(autoencoder),这里网络的层次结构为一个输入层,两个隐层,后面再跟着一个softmax分类器:

    采用贪婪算法,首先把input和feature1看作一个自动编码机,训练出二者之间的参数,然后用feature1层的激活值作为输出,输入到feature2,即把feature1和feature2再看作一个自动编码机,训练出这两层之间的参数,这两步都没有用到分类标签,所以是无监督学习,最后把feature2的激活值作为提取的的特征,输入到分类器,这里需要标签来计算代价函数,从而由优化这个代价函数来训练出feature2与分类器之间的参数,所以这一步是有监督学习,这一步完成之后,把测试样本输入网络,最后会输出该样本分别属于每一类的概率,选出最大概率对应的类别,就是最终的分类结果。

    为了使得分类结果更加精确,可以对训练出的参数进行微调,就是在有监督学习之后,我们利用有标签的训练数据可以计算出分类残差,然后利用这个残差反向传播,对已经训练出的参数进行进一步微调,会对最终预测的精度有很大提升

    下面是第一层训学习出的特征:

    可以看出都是一些笔迹的边缘

    作为对比,训练结果显示,微调之后,分类准确度有大幅提升,所以在训练深度网络之后,利用部分标签数据进行微调是一件很有必要的学习

    Before Finetuning Test Accuracy: 91.760%
    After Finetuning Test Accuracy: 97.710%

    下面是部分程序代码,需要用到,完整代码请先下载minFunc.rar,然后下载stacked_exercise.rar,minFunc.rar里面是lbfgs优化函数,在优化网络参数时需要用到。

    %% CS294A/CS294W Stacked Autoencoder Exercise
    
    %  Instructions
    %  ------------
    % 
    %  This file contains code that helps you get started on the
    %  sstacked autoencoder exercise. You will need to complete code in
    %  stackedAECost.m
    %  You will also need to have implemented sparseAutoencoderCost.m and 
    %  softmaxCost.m from previous exercises. You will need the initializeParameters.m
    %  loadMNISTImages.m, and loadMNISTLabels.m files from previous exercises.
    %  
    %  For the purpose of completing the assignment, you do not need to
    %  change the code in this file. 
    %
    %%======================================================================
    %% STEP 0: Here we provide the relevant parameters values that will
    %  allow your sparse autoencoder to get good filters; you do not need to 
    %  change the parameters below.
    
    inputSize = 28 * 28;
    numClasses = 10;
    hiddenSizeL1 = 200;    % Layer 1 Hidden Size
    hiddenSizeL2 = 200;    % Layer 2 Hidden Size
    sparsityParam = 0.1;   % desired average activation of the hidden units.
                           % (This was denoted by the Greek alphabet rho, which looks like a lower-case "p",
                           %  in the lecture notes). 
    lambda = 3e-3;         % weight decay parameter       
    beta = 3;              % weight of sparsity penalty term       
    
    %%======================================================================
    %% STEP 1: Load data from the MNIST database
    %
    %  This loads our training data from the MNIST database files.
    
    % Load MNIST database files
    trainData = loadMNISTImages('train-images.idx3-ubyte');
    trainLabels = loadMNISTLabels('train-labels.idx1-ubyte');
    
    trainLabels(trainLabels == 0) = 10; % Remap 0 to 10 since our labels need to start from 1
    
    %%======================================================================
    %% STEP 2: Train the first sparse autoencoder
    %  This trains the first sparse autoencoder on the unlabelled STL training
    %  images.
    %  If you've correctly implemented sparseAutoencoderCost.m, you don't need
    %  to change anything here.
    
    
    %  Randomly initialize the parameters
    sae1Theta = initializeParameters(hiddenSizeL1, inputSize);
    
    %% ---------------------- YOUR CODE HERE  ---------------------------------
    %  Instructions: Train the first layer sparse autoencoder, this layer has
    %                an hidden size of "hiddenSizeL1"
    %                You should store the optimal parameters in sae1OptTheta
    addpath minFunc/;
    options = struct;
    options.Method = 'lbfgs';
    options.maxIter = 400;
    options.display = 'on';
    %训练出第一层网络的参数
    [sae1OptTheta, cost] =  minFunc(@(p) sparseAutoencoderCost(p,...
                            inputSize,hiddenSizeL1,lambda,...
                            sparsityParam,beta,trainData),...
                            sae1Theta,options);
    save('step2.mat', 'sae1OptTheta');
    W1 = reshape(sae1OptTheta(1:hiddenSizeL1 * inputSize), hiddenSizeL1, inputSize);
    display_network(W1');
    % -------------------------------------------------------------------------
    
    %%======================================================================
    %% STEP 2: Train the second sparse autoencoder
    %  This trains the second sparse autoencoder on the first autoencoder
    %  featurse.
    %  If you've correctly implemented sparseAutoencoderCost.m, you don't need
    %  to change anything here.
    
    [sae1Features] = feedForwardAutoencoder(sae1OptTheta, hiddenSizeL1, ...
                                            inputSize, trainData);
    
    %  Randomly initialize the parameters
    sae2Theta = initializeParameters(hiddenSizeL2, hiddenSizeL1);
    
    %% ---------------------- YOUR CODE HERE  ---------------------------------
    %  Instructions: Train the second layer sparse autoencoder, this layer has
    %                an hidden size of "hiddenSizeL2" and an inputsize of
    %                "hiddenSizeL1"
    %
    %                You should store the optimal parameters in sae2OptTheta
    [sae2OptTheta, cost] =  minFunc(@(p)sparseAutoencoderCost(p,...
                            hiddenSizeL1,hiddenSizeL2,lambda,...
                            sparsityParam,beta,sae1Features),...
                            sae2Theta,options);
    % figure;
    % W11 = reshape(sae1OptTheta(1:hiddenSizeL1 * inputSize), hiddenSizeL1, inputSize);
    % W2 = reshape(sae2OptTheta(1:hiddenSizeL2 * hiddenSizeL1), hiddenSizeL2, hiddenSizeL1);
    % figure;
    % display_network(W2');
    % -------------------------------------------------------------------------
    
    
    %%======================================================================
    %% STEP 3: Train the softmax classifier
    %  This trains the sparse autoencoder on the second autoencoder features.
    %  If you've correctly implemented softmaxCost.m, you don't need
    %  to change anything here.
    
    [sae2Features] = feedForwardAutoencoder(sae2OptTheta, hiddenSizeL2, ...
                                            hiddenSizeL1, sae1Features);
    
    %  Randomly initialize the parameters
    saeSoftmaxTheta = 0.005 * randn(hiddenSizeL2 * numClasses, 1);
    
    
    %% ---------------------- YOUR CODE HERE  ---------------------------------
    %  Instructions: Train the softmax classifier, the classifier takes in
    %                input of dimension "hiddenSizeL2" corresponding to the
    %                hidden layer size of the 2nd layer.
    %
    %                You should store the optimal parameters in saeSoftmaxOptTheta 
    %
    %  NOTE: If you used softmaxTrain to complete this part of the exercise,
    %        set saeSoftmaxOptTheta = softmaxModel.optTheta(:);
    softmaxLambda = 1e-4;
    numClasses = 10;
    softoptions = struct;
    softoptions.maxIter = 400;
    softmaxModel = softmaxTrain(hiddenSizeL2,numClasses,softmaxLambda,...
                                sae2Features,trainLabels,softoptions);
    saeSoftmaxOptTheta = softmaxModel.optTheta(:);
    
    save('step4.mat', 'saeSoftmaxOptTheta');
    
    
    % -------------------------------------------------------------------------
    
    
    
    %%======================================================================
    %% STEP 5: Finetune softmax model
    
    % Implement the stackedAECost to give the combined cost of the whole model
    % then run this cell.
    
    % Initialize the stack using the parameters learned
    stack = cell(2,1);
    stack{1}.w = reshape(sae1OptTheta(1:hiddenSizeL1*inputSize), ...
                         hiddenSizeL1, inputSize);
    stack{1}.b = sae1OptTheta(2*hiddenSizeL1*inputSize+1:2*hiddenSizeL1*inputSize+hiddenSizeL1);
    stack{2}.w = reshape(sae2OptTheta(1:hiddenSizeL2*hiddenSizeL1), ...
                         hiddenSizeL2, hiddenSizeL1);
    stack{2}.b = sae2OptTheta(2*hiddenSizeL2*hiddenSizeL1+1:2*hiddenSizeL2*hiddenSizeL1+hiddenSizeL2);
    
    % Initialize the parameters for the deep model
    [stackparams, netconfig] = stack2params(stack);
    stackedAETheta = [ saeSoftmaxOptTheta ; stackparams ];
    
    %% ---------------------- YOUR CODE HERE  ---------------------------------
    %  Instructions: Train the deep network, hidden size here refers to the '
    %                dimension of the input to the classifier, which corresponds 
    %                to "hiddenSizeL2".
    %
    %
    [stackedAEOptTheta, cost] =  minFunc(@(p)stackedAECost(p,inputSize,hiddenSizeL2,...
                             numClasses, netconfig,lambda, trainData, trainLabels),...
                            stackedAETheta,options);
    save('step5.mat', 'stackedAEOptTheta');
    % -------------------------------------------------------------------------
    
    
    
    %%======================================================================
    %% STEP 6: Test 
    %  Instructions: You will need to complete the code in stackedAEPredict.m
    %                before running this part of the code
    %
    
    % Get labelled test images
    % Note that we apply the same kind of preprocessing as the training set
    testData = loadMNISTImages('t10k-images.idx3-ubyte');
    testLabels = loadMNISTLabels('t10k-labels.idx1-ubyte');
    
    testLabels(testLabels == 0) = 10; % Remap 0 to 10
    
    [pred] = stackedAEPredict(stackedAETheta, inputSize, hiddenSizeL2, ...
                              numClasses, netconfig, testData);
    
    acc = mean(testLabels(:) == pred(:));
    fprintf('Before Finetuning Test Accuracy: %0.3f%%
    ', acc * 100);
    
    [pred] = stackedAEPredict(stackedAEOptTheta, inputSize, hiddenSizeL2, ...
                              numClasses, netconfig, testData);
    
    acc = mean(testLabels(:) == pred(:));
    fprintf('After Finetuning Test Accuracy: %0.3f%%
    ', acc * 100);
    
    % Accuracy is the proportion of correctly classified images
    % The results for our implementation were:
    %
    % Before Finetuning Test Accuracy: 87.7%
    % After Finetuning Test Accuracy:  97.6%
    %
    % If your values are too low (accuracy less than 95%), you should check 
    % your code for errors, and make sure you are training on the 
    % entire data set of 60000 28x28 training images 
    % (unless you modified the loading code, this should be the case)
    function [ cost, grad ] = stackedAECost(theta, inputSize, hiddenSize, ...
                                                  numClasses, netconfig, ...
                                                  lambda, data, labels)
                                             
    % stackedAECost: Takes a trained softmaxTheta and a training data set with labels,
    % and returns cost and gradient using a stacked autoencoder model. Used for
    % finetuning.
                                             
    % theta: trained weights from the autoencoder
    % visibleSize: the number of input units
    % hiddenSize:  the number of hidden units *at the 2nd layer*
    % numClasses:  the number of categories
    % netconfig:   the network configuration of the stack
    % lambda:      the weight regularization penalty
    % data: Our matrix containing the training data as columns.  So, data(:,i) is the i-th training example. 
    % labels: A vector containing labels, where labels(i) is the label for the
    % i-th training example
    
    
    %% Unroll softmaxTheta parameter
    
    % We first extract the part which compute the softmax gradient
    softmaxTheta = reshape(theta(1:hiddenSize*numClasses), numClasses, hiddenSize);
    
    % Extract out the "stack"
    stack = params2stack(theta(hiddenSize*numClasses+1:end), netconfig);
    
    % You will need to compute the following gradients
    softmaxThetaGrad = zeros(size(softmaxTheta));
    stackgrad = cell(size(stack));
    for d = 1:numel(stack)
        stackgrad{d}.w = zeros(size(stack{d}.w));
        stackgrad{d}.b = zeros(size(stack{d}.b));
    end
    
    cost = 0; % You need to compute this
    
    % You might find these variables useful
    M = size(data, 2);
    groundTruth = full(sparse(labels, 1:M, 1));
    
    
    %% --------------------------- YOUR CODE HERE -----------------------------
    %  Instructions: Compute the cost function and gradient vector for 
    %                the stacked autoencoder.
    %
    %                You are given a stack variable which is a cell-array of
    %                the weights and biases for every layer. In particular, you
    %                can refer to the weights of Layer d, using stack{d}.w and
    %                the biases using stack{d}.b . To get the total number of
    %                layers, you can use numel(stack).
    %
    %                The last layer of the network is connected to the softmax
    %                classification layer, softmaxTheta.
    %
    %                You should compute the gradients for the softmaxTheta,
    %                storing that in softmaxThetaGrad. Similarly, you should
    %                compute the gradients for each layer in the stack, storing
    %                the gradients in stackgrad{d}.w and stackgrad{d}.b
    %                Note that the size of the matrices in stackgrad should
    %                match exactly that of the size of the matrices in stack.
    %
    
    depth = numel(stack);
    z = cell(depth+1,1);
    a = cell(depth+1, 1);
    a{1} = data;
    
    for layer = (1:depth)
      z{layer+1} = stack{layer}.w * a{layer} + repmat(stack{layer}.b, [1, size(a{layer},2)]);
      a{layer+1} = sigmoid(z{layer+1});
    end
    
    M = softmaxTheta * a{depth+1};
    M = bsxfun(@minus, M, max(M));
    p = bsxfun(@rdivide, exp(M), sum(exp(M)));
    
    cost = -1/numClasses * groundTruth(:)' * log(p(:)) + lambda/2 * sum(softmaxTheta(:) .^ 2);
    softmaxThetaGrad = -1/numClasses * (groundTruth - p) * a{depth+1}' + lambda * softmaxTheta;
    
    d = cell(depth+1);
    
    d{depth+1} = -(softmaxTheta' * (groundTruth - p)) .* a{depth+1} .* (1-a{depth+1});
    
    for layer = (depth:-1:2)
      d{layer} = (stack{layer}.w' * d{layer+1}) .* a{layer} .* (1-a{layer});
    end
    
    for layer = (depth:-1:1)
      stackgrad{layer}.w = (1/numClasses) * d{layer+1} * a{layer}';
      stackgrad{layer}.b = (1/numClasses) * sum(d{layer+1}, 2);
    end
    % -------------------------------------------------------------------------
    
    %% Roll gradient vector
    grad = [softmaxThetaGrad(:) ; stack2params(stackgrad)];
    
    end
    
    
    % You might find this useful
    function sigm = sigmoid(x)
        sigm = 1 ./ (1 + exp(-x));
    end
    function [pred] = stackedAEPredict(theta, inputSize, hiddenSize, numClasses, netconfig, data)
                                             
    % stackedAEPredict: Takes a trained theta and a test data set,
    % and returns the predicted labels for each example.
                                             
    % theta: trained weights from the autoencoder
    % visibleSize: the number of input units
    % hiddenSize:  the number of hidden units *at the 2nd layer*
    % numClasses:  the number of categories
    % data: Our matrix containing the training data as columns.  So, data(:,i) is the i-th training example. 
    
    % Your code should produce the prediction matrix 
    % pred, where pred(i) is argmax_c P(y(c) | x(i)).
     
    %% Unroll theta parameter
    
    % We first extract the part which compute the softmax gradient
    softmaxTheta = reshape(theta(1:hiddenSize*numClasses), numClasses, hiddenSize);
    
    % Extract out the "stack"
    stack = params2stack(theta(hiddenSize*numClasses+1:end), netconfig);
    
    %% ---------- YOUR CODE HERE --------------------------------------
    %  Instructions: Compute pred using theta assuming that the labels start 
    %                from 1.
    
    depth = numel(stack);
    z = cell(depth+1,1);
    a = cell(depth+1, 1);
    a{1} = data;
    
    for layer = (1:depth)
      z{layer+1} = stack{layer}.w * a{layer} + repmat(stack{layer}.b, [1, size(a{layer},2)]);
      a{layer+1} = sigmoid(z{layer+1});
    end
    
    [~, pred] = max(softmaxTheta * a{depth+1});
    
    
    
    
    
    
    
    
    
    % -----------------------------------------------------------
    
    end
    
    
    % You might find this useful
    function sigm = sigmoid(x)
        sigm = 1 ./ (1 + exp(-x));
    end
  • 相关阅读:
    java 线程的终止与线程中断
    java 线程协作 wait(等待)与 notiy(通知)
    java 线程协作 yield()
    java 线程协作 join()
    python学习 文件操作
    linux 学习 常用命令
    linux 学习 设置固定网Ip
    web 安全
    MySQL数据物理备份之tar打包备份
    MySQL数据物理备份之lvm快照
  • 原文地址:https://www.cnblogs.com/90zeng/p/Stacked_Autoencoders.html
Copyright © 2011-2022 走看看