zoukankan      html  css  js  c++  java
  • GPS经纬度判断是否在圆、多边形、矩形内

    class 点面关系
    {
    static void Main(string[] args)
    {
    //Vector2D point1 = new Vector2D(39.909209536859834, 116.3225715637207);//in
    Vector2D point1 = new Vector2D(39.901045, 116.415596);//out
    Vector2D cPoint = new Vector2D(39.909209536859834, 116.3225715637207);
    Console.WriteLine("点是否在圆内:" + 点是否在圆内(cPoint, 8000, point1));
    Console.WriteLine("点是否在圆内:" + 点是否在圆内(cPoint, new Vector2D(39.901045, 116.415596), point1));


    //Vector2D point2 = new Vector2D(39.924745, 116.379204);//in
    Vector2D point2 = new Vector2D(39.928695, 116.546059);//out
    Vector2D pointA = new Vector2D(39.913423004886866, 116.36890411376953);
    Vector2D pointB = new Vector2D(39.93450133090293, 116.38727188110351);
    Console.WriteLine("点是否在矩形内:" + 点是否在矩形内(pointA, pointB, point2));


    Vector2D point3 = new Vector2D(39.957649, 116.376801);//in
    //Vector2D point3 = new Vector2D(39.919216, 116.2817);//out
    List<Vector2D> polygon = new List<Vector2D>();
    polygon.Add(new Vector2D(39.909209536859834, 116.3225715637207));
    polygon.Add(new Vector2D(39.95920953685983, 116.3725715637207));
    polygon.Add(new Vector2D(39.95920953685983, 116.42257156372072));
    polygon.Add(new Vector2D(39.909209536859834, 116.4725715637207));
    polygon.Add(new Vector2D(39.85920953685984, 116.42257156372072));
    polygon.Add(new Vector2D(39.85920953685984, 116.3725715637207));
    Console.WriteLine("点是否在多边形内:" + 点是否在多边形内(point3, polygon));

    Console.ReadLine();
    }

    /// <summary>
    /// 点是否在圆内(在边上也认为在圆内)
    /// </summary>
    /// <param name="cPoint">圆心坐标</param>
    /// <param name="cRadius">圆半径</param>
    /// <param name="point">当前点</param>
    /// <returns></returns>
    public static bool 点是否在圆内(Vector2D cPoint, double cRadius, Vector2D point)
    {
    var d1 = Distance(cPoint.Lat, cPoint.Lon, point.Lat, point.Lon);
    double distance = Math.Sqrt(Math.Pow(Math.Abs(point.X - cPoint.X), 2) + Math.Pow(Math.Abs(point.Y - cPoint.Y), 2));
    return distance <= cRadius;
    }

    private static double Distance(double lon1, double lat1, double lon2, double lat2)
    {
    double R = 6378137; //地球半径
    lat1 = lat1 * Math.PI / 180.0;
    lat2 = lat2 * Math.PI / 180.0;
    double sa2 = Math.Sin((lat1 - lat2) / 2.0);
    double sb2 = Math.Sin(((lon1 - lon2) * Math.PI / 180.0) / 2.0);
    return 2 * R * Math.Asin(Math.Sqrt(sa2 * sa2 + Math.Cos(lat1) * Math.Cos(lat2) * sb2 * sb2));
    }

    /// <summary>
    /// 点是否在圆内(在边上也认为在圆内)
    /// </summary>
    /// <param name="cPoint">圆心坐标</param>
    /// <param name="onPoint">圆边上坐标</param>
    /// <param name="point">当前点</param>
    /// <returns></returns>
    public static bool 点是否在圆内(Vector2D cPoint, Vector2D onPoint, Vector2D point)
    {
    double cRadius = Distance(cPoint.Lat, cPoint.Lon, onPoint.Lat, onPoint.Lon);
    double distance = Distance(cPoint.Lat, cPoint.Lon, point.Lat, point.Lon);
    return distance <= cRadius;
    }

    /// <summary>
    /// 点是否在多边形内(在边上也认为在多边形内)
    /// </summary>
    /// <param name="point">当前点</param>
    /// <param name="polygon">多边形点</param>
    /// <returns></returns>
    public static bool 点是否在多边形内(Vector2D point, List<Vector2D> polygon)
    {
    var res = SMath.CalcPointPolygonRelation(point, polygon);
    return res != PointPolygonRelation.OutOfPolygon;
    }

    /// <summary>
    /// 点是否在矩形内
    /// </summary>
    /// <param name="pointA">对角上点A</param>
    /// <param name="pointB">对角上点B</param>
    /// <param name="point">当前点</param>
    /// <returns></returns>
    public static bool 点是否在矩形内(Vector2D pointA, Vector2D pointB, Vector2D point)
    {
    List<Vector2D> polygon = new List<Vector2D>();
    polygon.Add(pointA);
    polygon.Add(new Vector2D(pointA.X, pointB.Y));
    polygon.Add(pointB);
    polygon.Add(new Vector2D(pointB.X, pointA.Y));
    var res = SMath.CalcPointPolygonRelation(point, polygon);
    return res != PointPolygonRelation.OutOfPolygon;
    }
    }

    ******************

    public static PointPolygonRelation CalcPointPolygonRelation(double x, double y, IList polygon)
    {
    if(polygon.Count < 3) return PointPolygonRelation.OutOfPolygon;
    IVector start = (IVector)polygon[polygon.Count - 2];
    if(start == null) return PointPolygonRelation.OutOfPolygon;
    IVector middle = (IVector)polygon[polygon.Count - 1];
    IVector end;
    PointPolygonRelation result = PointPolygonRelation.OutOfPolygon;
    int num = 0;
    double minX, minY, maxX, maxY;
    for(int i = 0; i < polygon.Count; i++, start = middle, middle = end)
    {
    end = (IVector)polygon[i];
    //如果点刚好在顶点上,则直接返回
    if((x == start.X && y == start.Y) || (x == middle.X && y == middle.Y) || (x == end.X && y == end.Y))
    {
    result = PointPolygonRelation.OnPolygonVertex;
    goto Return;
    }
    if(middle.X == end.X && middle.Y == end.Y)
    {
    continue;
    }
    minX = Math.Min(middle.X, end.X);
    maxX = Math.Max(middle.X, end.X);
    //如果X不落在最大X值和最小X值之间,则跳过
    if(x > maxX || x < minX) continue;

    minY = Math.Min(middle.Y, end.Y);
    maxY = Math.Max(middle.Y, end.Y);
    //如果Y大于最大Y值则跳过,因为向上做射线不可能相交
    if(y > maxY) continue;
    if(minX == maxX)//需要判断相交的线段为Y轴平行线
    {
    if(y > minY && y < maxY)
    {
    result = PointPolygonRelation.OnPolygonBorder;
    goto Return;
    }
    else if(y < minY)//如果在最小的Y之下,因为目标线段为Y轴平行线,所以记为1次
    {
    num++;
    }
    }
    else
    {
    double k = (middle.Y - end.Y) / (middle.X - end.X);
    double b = middle.Y - k * middle.X;

    double crossY = k * x + b;

    if(crossY < y) continue;//如果交点小于y则跳过,因为我们是向上做射线

    if(crossY == y)
    {
    result = PointPolygonRelation.OnPolygonBorder;
    goto Return;
    }

    if(x == maxX || x == minX)
    {
    if((start.X > middle.X && end.X < middle.X) || (start.X < middle.X && end.X > middle.X))
    num++;
    }
    else
    {
    num++;
    }
    }
    }

    if(num % 2 != 0) result = PointPolygonRelation.InPolygon;
    Return:

    return result;
    }

    /// <summary>
    /// 计算点和面的关系
    /// </summary>
    /// <param name="point"></param>
    /// <param name="polygon"></param>
    /// <returns></returns>
    public static PointPolygonRelation CalcPointPolygonRelation(IVector point, IList polygon)
    {
    return CalcPointPolygonRelation(point.X, point.Y, polygon);
    }

    _____________

    public enum PointPolygonRelation
    {
    /// <summary>
    /// 点在面内
    /// </summary>
    InPolygon,
    /// <summary>
    /// 点在边上
    /// </summary>
    OnPolygonBorder,
    /// <summary>
    /// 点在面外
    /// </summary>
    OutOfPolygon,
    /// <summary>
    /// 点在面的拐点上
    /// </summary>
    OnPolygonVertex
    }

  • 相关阅读:
    HDU 1863 畅通工程(并查集)
    HDU 1232 畅通工程
    洛谷 1162 填涂颜色 (dfs,染色法)
    HDU 2689 sort it(树状数组 逆序数)
    mod_js.so下载 转自网络
    The superclass "javax.servlet.http.HttpServlet" was not found on the Java Build Path
    B计划 第七周
    B计划 第六周
    B计划 第五周
    B计划 第四周(开学第一周)
  • 原文地址:https://www.cnblogs.com/94cool/p/2946030.html
Copyright © 2011-2022 走看看