zoukankan      html  css  js  c++  java
  • 广告中的去重选择

    广告中的去重选择

             在广告展示策略中,有一些去重的需求。本文中介绍一个去重中的细节问题。

    举一个广告主去重的例子。如果在页面上一次可以展示三个广告,如果我们展示的广告中有两上广告是同一个广告主的,那么广告主会很不开心。因为他会感觉自己的展示次数是虚的,对他来讲是一次展示,但给他的报表里却说是两次。

     

    广告中的去重选择 - quweiprotoss - Koala++s blog

    再举一个素材去重的例子。如果一个用户在网页浏览时,看到大量相似素材非常接近的广告,他会有点反感,并且通常不会去点击多个相似素材的广告,这对广告主,广告受众,广告平台都是不利的。

     

    广告中的去重选择 - quweiprotoss - Koala++s blog

     

    看到这个问题,第一反应会是这算什么问题呀,简单去重一下不就可以吗?是的,去重一下是可以解决,但这是最优解吗?

    我举一个例子说明,下图中的每一个块代表一个候选广告,一个广告有两个属性,用两个颜色表示,相同属性中相同颜色不能重复,一共需要2个广告。

    广告中的去重选择 - quweiprotoss - Koala++s blog

    现在看简单去重的逻辑,我们先选择了广告1,广告1的第一个属性(深棕色)与广告2的第一个属性冲突,广告1的第二个属性(深蓝色)与广告3第二个属性冲突。所以广告1只能与广告4搭配,它们两个的价值之和为9+1=10

    而换一个思路,不一定要选择第一个广告后去重,那么我们选择广告2和广告3,它们的价值之和是8+7=15。也就是说简单的去重逻辑不是最优策略。

    有了上述的问题,我们将它形式化成一个算法问题。有N个候选广告,每个广告一次展示的价值为Vi (i=[1, … N])N个候选广告已经按价值排序,一次展示需要K个广告。现要找出K个价值之和最大的广告。

    再对上面的问题进行一点解释,候选广告已经按价值排序,这是广告系统中的逻辑决定的。

    看完问题之后,第一反应应该是这不就是0/1背包问题吗?但仔细想一下,与0/1背包问题还是有点不一样,1. 0/1背包问题中的weight在这里是相同的,一个广告就占一个展示的位置,广告与广告所占的空间相同(我们现在正在搞不相素材规格的混排问题,就不发散了),但这个区别只是说它是0/1背包问题的一个特例。2. N个候选已经按价值排序过了,按价值排序了,那么就可以提前剪枝了。

             Talk is cheap, Show me the Code

    AD_COUNT = ad_list.size();

    CURRENT_MAX_VALUE = 0;

    REQUIRED_AD_COUNT = 4;

    FETCH_LIST = []

     

    FindMaxValue(index, sum_value, fetch_list)

        if index >= AD_COUNT

           if sum_value > CURRENT_MAX_VALUE

               CURRENT_MAX_VALUE = sum_value

               FETCH_LIST = fetch_list;

           return ;

        if fetch_list.size() == REQUIRED_AD_COUNT

           if sum_value > CURRENT_MAX_VALUE

               CURRENT_MAX_VALUE = sum_value

               FETCH_LIST = fetch_list;

           return ;

     

     

        if (Pruning(index, fetch_count, sum_value))

           return ;

     

        value = ad_list[index].value;

        copy_sum_value = sum_value;

        copy_index = index

        copy_fetch_list = fetch_list.deep_copy();

        FindMaxValue(index + 1, sum_value, fetch_list);

     

        copy_sum_value += value;

        copy_fetch_list fetch_list.append(index);

        copy_index += 1;

     

        FindMaxValue(copy_index, copy_sum_value, copy_fetch_list);

     

    Pruning(index, fetch_count sum_value)

        int max_value = sum_value;

        remain_count = REQUIRED_AD_COUNT - fetch_count;

        for i = index to remain_count

           if index >= AD_COUNT &&

               max_value < CURRENT_MAX_VALUE

                  return true;

          

           max_value += ad_list[i].value;

     

        if max_value < CURRENT_MAX_VALUE

           return true;

     

        return false;

  • 相关阅读:
    CAP 与数据一致性
    C++的构造函数为何不能为虚函数
    构造函数和析构函数中可以调用调用虚函数吗
    HTTP状态码
    C++ 单例模式实现
    【转】十大经典排序算法
    C++ short/int/long/long long 等数据类型大小
    块/文件/对象三种存储的优缺点
    罗振宇《时间的朋友》2019-2020
    Google Hacking
  • 原文地址:https://www.cnblogs.com/94julia/p/4612542.html
Copyright © 2011-2022 走看看