**STL提供了两个用来计算排列组合关系的算法,分别是next_permutation和prev_permutation。首先我们必须了解什么是“下一个”排列组合,什么是“前一个”排列组合。
next_permutation()会取得[first,last)所标示之序列的下一个排列组合,如果没有下一个排列组合,便返回false;否则返回true。这个算法有两个版本。版本一使用元素型别所提供的less-than(第一个为a)操作符来决定下一个排列组合,版本二则是以仿函数comp来决定。**
简单应用:
```
#include<iostream>
#include<algorithm>
using namespace std;
int main() {
int ans[4]={1,2,3,4};
sort(ans,ans+4);
/* 这个sort可以不用,因为{1,2,3,4}已经排好序*/
do /*注意这步,如果是while循环,则需要提前输出*/
{ for(int i=0;i<4;++i)
cout<<ans[i]<<" ";
cout<<endl;
}while(next_permutation(ans,ans+4));
return 0;
```
**拓展
1.能否直接算出集合{1, 2, ..., m}的第n个排列?
举例说明:如7个数的集合为{1, 2, 3, 4, 5, 6, 7},要求出第n=1654个排列。
(1654 / 6!)取整得2,确定第1位为3(从0开始计数),剩下的6个数{1, 2, 4, 5, 6, 7},求第1654 % 6!=214个序列;
(214 / 5!)取整得1,确定第2位为2,剩下5个数{1, 4, 5, 6, 7},求第214 % 5!=94个序列;
(94 / 4!)取整得3,确定第3位为6,剩下4个数{1, 4, 5, 7},求第94 % 4!=22个序列;
(22 / 3!)取整得3,确定第4位为7,剩下3个数{1, 4, 5},求第22 % 3!=4个序列;
(4 / 2!)得2,确定第5为5,剩下2个数{1, 4};由于4 % 2!=0,故第6位和第7位为增序<1 4>;
因此所有排列为:3267514。
[代码实现]
```
#include<iostream>
#include<algorithm>
using namespace std;
int main() {
int ans[7]={1,2,3,4,5,6,7};
sort(ans,ans+7); /* 同上可以不用sort */
int n=0;
do //注意这步,如果是while循环,则需要提前输出
{ if(n == 1654) {
for(int i=0;i<7;++i)
cout<<ans[i];
cout<<endl;
break;
}
n++;
}
while(next_permutation(ans,ans+7));
return 0; }
```
2. 给定一种排列,如何算出这是第几个排列呢?
和前一个问题的推导过程相反。例如3267514:
后6位的全排列为6!,3为{1, 2, 3 ,4 , 5, 6, 7}中第2个元素(从0开始计数),故2*720=1440;
后5位的全排列为5!,2为{1, 2, 4, 5, 6, 7}中第1个元素,故1*5!=120;
后4位的全排列为4!,6为{1, 4, 5, 6, 7}中第3个元素,故3*4!=72;
后3位的全排列为3!,7为{1, 4, 5, 7}中第3个元素,故3*3!=18;
后2位的全排列为2!,5为{1, 4, 5}中第2个元素,故2*2!=4;
最后2位为增序,因此计数0,求和得:1440+120+72+18+4=1654
这个的代码实现,可以用一个数组a保存3267514,然后while调用next_permutation(),用n计数,每次与数组a比较,相等则输出n;