这个东西花里胡哨的其实就是每次加一个点,问就是和当前点曼哈顿距离小于k的点数
发现覆盖范围是一个菱形,我们可以旋转坐标系,曼哈顿转切比雪夫
是矩形就变成裸三维偏序了
数据范围真TM毒瘤
#include<cstdio> #include<iostream> #include<cstring> #include<cstdlib> #include<algorithm> #include<cmath> #define x first #define y second using namespace std; typedef pair<int,int> pa; const int maxn=61000; const int maxQ=61000,maxC=61000; const int maxm=maxC+maxQ*4; //-----------------------------deq---------------------------------------------- int s[maxC+maxn]; int lowbit(int x){return x&-x;} void change(int x,int k){ while(x<maxC+maxn){s[x]+=k;x+=lowbit(x);} } int getsum(int x){ int ret=0; while(x>0){ret+=s[x];x-=lowbit(x);} return ret; } //~~~~~~~~~~~~~~~~~3~~~~~~~~~~~~~~~~~~~~~~~~ struct query { pa p;int id; query(){} query(pa P,int ID){p=P,id=ID;} }q[maxm+maxn];int qlen,ak,as[maxQ]; query t[maxm+maxn]; void cdq(int l,int r) { if(l==r)return ; int mid=(l+r)/2; cdq(l,mid),cdq(mid+1,r); int i=l,j=mid+1,p=l; while(i<=mid&&j<=r) { if(q[i].p.x<=q[j].p.x) { if(q[i].id==0)change(q[i].p.y,1); t[p++]=q[i++]; } else { if(q[j].id!=0)as[abs(q[j].id)]+=(q[j].id>0?1:-1)*getsum(q[j].p.y); t[p++]=q[j++]; } } while(i<=mid) { if(q[i].id==0)change(q[i].p.y,1); t[p++]=q[i++]; } while(j<=r) { if(q[j].id!=0)as[abs(q[j].id)]+=(q[j].id>0?1:-1)*getsum(q[j].p.y); t[p++]=q[j++]; } for(int i=l;i<=mid;i++) if(q[i].id==0)change(q[i].p.y,-1); for(int i=l;i<=r;i++)q[i]=t[i]; } //~~~~~~~~~~~~~~~~~2~~~~~~~~~~~~~~~~~~~~~~~~ //-----------------------------solve-------------------------------------------- int a[maxn];char ss[10]; int xlen,ylen,lsx[maxm+maxn],lsy[maxm+maxn]; pa npt(int x,int y){return make_pair(x+y,x-y);} int main() { freopen("a.in","r",stdin); freopen("a.out","w",stdout); int n,Q,u,k; pa pp; scanf("%d%d",&n,&Q); for(int i=1;i<=n;i++) scanf("%d",&a[i]),q[++qlen]=query(npt(i,a[i]),0); for(int i=1;i<=Q;i++) { scanf("%s",ss+1); if(ss[1]=='M') { scanf("%d%d",&u,&k);a[u]=k; q[++qlen]=query(npt(u,a[u]),0); } else { scanf("%d%d",&u,&k);ak++; pp=npt(u+k,a[u]);q[++qlen]=query(pp,ak); pp=npt(u-k,a[u]);pp.x--,pp.y--,q[++qlen]=query(pp,ak); pp=npt(u,a[u]+k);pp.y--;q[++qlen]=query(pp,-ak); pp=npt(u,a[u]-k);pp.x--;q[++qlen]=query(pp,-ak); } } for(int i=1;i<=qlen;i++) lsx[++xlen]=q[i].p.x,lsy[++ylen]=q[i].p.y; sort(lsx+1,lsx+xlen+1); sort(lsy+1,lsy+ylen+1); xlen=unique(lsx+1,lsx+xlen+1)-lsx-1; ylen=unique(lsy+1,lsy+ylen+1)-lsy-1; for(int i=1;i<=qlen;i++) q[i].p.x=lower_bound(lsx+1,lsx+xlen+1,q[i].p.x)-lsx, q[i].p.y=lower_bound(lsy+1,lsy+ylen+1,q[i].p.y)-lsy; cdq(1,qlen); for(int i=1;i<=ak;i++)printf("%d ",as[i]); return 0; }