zoukankan      html  css  js  c++  java
  • 浅谈Huffman树

    所谓Huffman树,就是叶子结点带权的(K)叉树,假设每个叶子的权值为(v),到根的距离为(dep),那么最小化(sum v_i*dep_i)就是(Huffman)树的拿手好戏。

    为了最小化这个值,显然我们应该尽量让权值大的叶子深度浅,合并果子就是一个典型(2)(Huffman)树问题。

    那么对于(k)(Huffman)树呢?

    我们以(3)(Huffman)树为例,有这么(6)个数:(1,2,3,5,8,9)

    按照合并果子这题的思路,我们应该先花(6)体力合并(1,2,3),新序列为:(6,5,8,9)

    然后花(19)体力合并(5,6,8),新序列为:(19,9)

    最后花(28)体力合并(19,9),新序列是(28),一共用的体力为(53)

    但是我们换一种方式合并:

    (1,2,3,5,8,9)

    (3,3,5,8,9)

    (11,8,9)

    (28)

    一共用了(42)体力。

    那么问题就出现了,显然对于(2)(Huffman)树的贪心策略不再适用于(k)(Huffman)树。

    但是,是真的不适用么?

    仔细考虑上面两个例子,在用了(53)体力的例子里,我们最后一步合并了(19,9),但其实我们还可以假设有一个权值为(0)的点在这一步被合并了。

    但在用了(42)体力的例子里,我们第一步就把权值(0)给安排了。

    所以对于(2)(Huffman)树的贪心策略还是有用的,不过我们忽视了权值为(0)的结点。因为(2)(Huffman)树怎么建都不会存在某一步被合并的结点少于(2),但是(k)(Huffman)树不一样,它必须满足((n-1)mod(k-1)=0)才会每一步合并的结点都不少于(k)。因为每次合并都会减少(k-1)个结点,一共会减少(n-1)个结点。如果不满足上述等式,我们只需要不断添加权值为(0)的结点直到它满足为止即可。

    关于(k)(Huffman)树的建立,也可以按照合并果子一样用堆辅助即可。

  • 相关阅读:
    VS2019正式版 密钥 Visual Studio 2019 破解 激活码 Key
    关于随机数的前世今生
    木兮的纪中集训感想
    浅谈欧洲算法——模拟退火
    你没听过的梅森旋转算法
    二分贪心杂题
    DP专项训练
    实验八 进程间通信
    实验七 信号
    实验六 进程基础
  • 原文地址:https://www.cnblogs.com/AKMer/p/10300870.html
Copyright © 2011-2022 走看看