就是求Ax三B(mod C)当C为素数时
#include<cstdio> #include<cstring> #include<cmath> #include<algorithm> using namespace std; typedef long long LL; const int MAXINT = ((1 << 30) - 1) * 2 + 1; int A, B, C; struct Hashmap //哈希表代替map { static const int Ha = 999917, maxe = 46340; int E, lnk[Ha], son[maxe + 5], nxt[maxe + 5], w[maxe + 5]; int top, stk[maxe + 5]; void clear() { E = 0; while (top) lnk[stk[top--]] = 0; } void Add(int x, int y) { son[++E] = y; nxt[E] = lnk[x]; w[E] = MAXINT; lnk[x] = E; } bool count(int y) { int x = y%Ha; for (int j = lnk[x]; j; j = nxt[j]) if (y == son[j]) return true; return false; } int& operator [] (int y) { int x = y%Ha; for (int j = lnk[x]; j; j = nxt[j]) if (y == son[j]) return w[j]; Add(x, y); stk[++top] = x; return w[E]; } }; Hashmap f; int exgcd(int a, int b, int &x, int &y) { if (!b) { x = 1; y = 0; return a; } int r = exgcd(b, a%b, x, y), t = x; x = y; y = t - a / b*y; return r; } int BSGS(int A, int B, int C) { if (C == 1) if (!B) return A != 1; else return -1; if (B == 1) if (A) return 0; else return -1; if (A%C == 0) if (!B) return 1; else return -1; //几种特判 int m = ceil(sqrt(C)), D = 1, Base = 1; f.clear(); for (int i = 0; i <= m - 1; i++) //先把A^j存进哈希表 { f[Base] = min(f[Base], i); Base = ((LL)Base*A) % C; } for (int i = 0; i <= m - 1; i++) { int x, y, r = exgcd(D, C, x, y); x = ((LL)x*B%C + C) % C; //扩欧求A^j if (f.count(x)) return i*m + f[x]; //找到了 D = ((LL)D*Base) % C; } return -1; } int main() { while (~scanf("%d%d%d", &C, &A, &B)) { int ans = BSGS(A, B, C); if (ans == -1) printf("no solution "); else printf("%d ", ans); } return 0; }