zoukankan      html  css  js  c++  java
  • UVa 201 Squares

    题意:

    给出这样一个图,求一共有多少个大小不同或位置不同的正方形。

    分析:

    这种题一看就有思路,最开始的想法就是枚举正方形的位置,需要二重循环,枚举边长一重循环,判断是否为正方形又需要一重循环,复杂度为O(n4),对于n≤9来说,这个复杂度可以接受。

    可以像预处理前缀和那样,用O(1)的时间判断是否为正方形,这样总的复杂度就优化到O(n3)。

    这个方法转自这里

    We can think that vertical or horizontal lines are edges between two adjecent point. After that we can take a three dimensional array (say a [N][N][2]) to store the count of horizontal(a[i][j][0]) edges and vertical(a[i][j][1]) edges. a[i][j][0] contains number of horizontal edges at row i upto coloumn j. and a[i][j][1] contains number of vertical edges at coloumn j upto row i. Next you use a O(n^2) loop to find a square. a square of size 1 is found if there is an edge from (i,j) to (i,j+1) and (i,j+1) to (i+1,j+1) and (i,j) to (i+1,j) and (i+1,j) to (i+1,j+1) we can get this just by subtracting values calculated above.

    举个例子,a[i][j][0]表示在第i行上,从第一列到第j列水平边数,如果a[i][j+l][0] - a[i][j][0],说明点(i, j)到(i, j+l)有一条长为l的水平线段。

    我还被输入坑了,注意VH后面,哪个数代表行,哪个数代表列。

     1 #include <cstdio>
     2 #include <cstring>
     3 
     4 const int maxn = 10;
     5 bool G[2][maxn][maxn];
     6 int a[2][maxn][maxn], cnt[maxn];
     7 
     8 int main()
     9 {
    10     //freopen("in.txt", "r", stdin);
    11     int n, m, kase = 0;
    12     while(scanf("%d", &n) == 1 && n)
    13     {
    14         memset(G, false, sizeof(G));
    15         memset(a, 0, sizeof(a));
    16         memset(cnt, 0, sizeof(cnt));
    17         scanf("%d", &m);
    18         getchar();
    19         for(int k = 0; k < m; ++k)
    20         {
    21             char c;
    22             int i, j;
    23             scanf("%c %d %d", &c, &i, &j);
    24             getchar();
    25             if(c == 'H') G[0][i][j+1] = true;
    26             else G[1][j+1][i] = true;
    27         }
    28         for(int i = 1; i <= n; ++i)
    29             for(int j = 1; j <= n; ++j)
    30             {
    31                 a[0][i][j] = a[0][i][j-1] + G[0][i][j];
    32                 a[1][i][j] = a[1][i-1][j] + G[1][i][j];
    33             }
    34 
    35         for(int i = 1; i < n; ++i)
    36             for(int j = 1; j < n; ++j)  //枚举正方形的左上角
    37                 for(int l = 1; i+l<=n && j+l<=n; ++l)   //枚举正方形的边长
    38                     if(a[0][i][j+l]-a[0][i][j] == l && a[0][i+l][j+l]-a[0][i+l][j] == l
    39                        && a[1][i+l][j]-a[1][i][j] == l && a[1][i+l][j+l]-a[1][i][j+l] == l)
    40                         cnt[l]++;
    41 
    42         if(kase) printf("
    **********************************
    
    ");
    43         printf("Problem #%d
    
    ", ++kase);
    44         bool flag = false;
    45         for(int i = 1; i <= n; ++i) if(cnt[i])
    46         {
    47             printf("%d square (s) of size %d
    ", cnt[i], i);
    48             flag = true;
    49         }
    50         if(!flag) puts("No completed squares can be found.");
    51     }
    52 
    53     return 0;
    54 }
    代码君
  • 相关阅读:
    [调参]batch_size的选择
    [调参]CV炼丹技巧/经验
    [Pytorch]Pytorch加载预训练模型(转)
    [PyTorch]论文pytorch复现中遇到的BUG
    [Opencv]图像的梯度与边缘检测(转)
    freemodbus移植、实例及其测试方法
    eclipse的C/C++开发搭建
    ROS安装
    U-boot移植
    QT开发实战一:图片显示
  • 原文地址:https://www.cnblogs.com/AOQNRMGYXLMV/p/4206130.html
Copyright © 2011-2022 走看看