【题目链接】:http://codeforces.com/problemset/problem/314/C
【题意】
让你从n个元素的数组中选出所有的不同的非递减子数列;
然后计算比这个子数列小的和它的长度一样长的数列的个数;
“小”的定义在题目里有说;
【题解】
设dp[i]表示以i作为非递减子数列的最后一个数的比它小的数列的个数;
则有递推式
dp[i] = (dp[1]+dp[2]+…+dp[i])*i+i;
写个树状数组,来快速求和就好;
要写出原数组,维护原数组;
不然求dp[i]比较麻烦;
最后输出∑dpi就好
【Number Of WA】
1(数组开小了)
【完整代码】
#include <bits/stdc++.h>
using namespace std;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define LL long long
#define rep1(i,a,b) for (int i = a;i <= b;i++)
#define rep2(i,a,b) for (int i = a;i >= b;i--)
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define ms(x,y) memset(x,y,sizeof x)
#define Open() freopen("F:\rush.txt","r",stdin)
#define Close() ios::sync_with_stdio(0),cin.tie(0)
typedef pair<int,int> pii;
typedef pair<LL,LL> pll;
const int dx[9] = {0,1,-1,0,0,-1,-1,1,1};
const int dy[9] = {0,0,0,-1,1,-1,1,-1,1};
const double pi = acos(-1.0);
const int N = 1e6;
const int N1 = 1e5;
const int MOD = 1e9+7;
struct BIT{
LL a[N+10];
int lowbit(int x){
return x&(-x);
}
void add(int x,LL y){
while (x<=N){
a[x] = (a[x]+y)%MOD;
x+=lowbit(x);
}
}
LL sum(int x){
LL temp = 0;
while (x>0){
temp = (temp+a[x])%MOD;
x-=lowbit(x);
}
return temp;
}
}c;
int n;
LL dp[N+10];
int main(){
//Open();
Close();
cin >> n;
rep1(i,1,n){
int x;
cin >> x;
LL temp = (c.sum(x)*x + x)%MOD;
c.add(x,(temp-dp[x]+MOD)%MOD);
dp[x] = temp;
}
cout << c.sum(N) << endl;
return 0;
}