zoukankan      html  css  js  c++  java
  • 【27.34%】【codeforces 611D】New Year and Ancient Prophecy

    time limit per test2.5 seconds
    memory limit per test512 megabytes
    inputstandard input
    outputstandard output
    Limak is a little polar bear. In the snow he found a scroll with the ancient prophecy. Limak doesn’t know any ancient languages and thus is unable to understand the prophecy. But he knows digits!

    One fragment of the prophecy is a sequence of n digits. The first digit isn’t zero. Limak thinks that it’s a list of some special years. It’s hard to see any commas or spaces, so maybe ancient people didn’t use them. Now Limak wonders what years are listed there.

    Limak assumes three things:

    Years are listed in the strictly increasing order;
    Every year is a positive integer number;
    There are no leading zeros.
    Limak is going to consider all possible ways to split a sequence into numbers (years), satisfying the conditions above. He will do it without any help. However, he asked you to tell him the number of ways to do so. Since this number may be very large, you are only asked to calculate it modulo 109 + 7.

    Input
    The first line of the input contains a single integer n (1 ≤ n ≤ 5000) — the number of digits.

    The second line contains a string of digits and has length equal to n. It’s guaranteed that the first digit is not ‘0’.

    Output
    Print the number of ways to correctly split the given sequence modulo 109 + 7.

    Examples
    input
    6
    123434
    output
    8
    input
    8
    20152016
    output
    4
    Note
    In the first sample there are 8 ways to split the sequence:

    “123434” = “123434” (maybe the given sequence is just one big number)
    “123434” = “1” + “23434”
    “123434” = “12” + “3434”
    “123434” = “123” + “434”
    “123434” = “1” + “23” + “434”
    “123434” = “1” + “2” + “3434”
    “123434” = “1” + “2” + “3” + “434”
    “123434” = “1” + “2” + “3” + “4” + “34”
    Note that we don’t count a split “123434” = “12” + “34” + “34” because numbers have to be strictly increasing.

    In the second sample there are 4 ways:

    “20152016” = “20152016”
    “20152016” = “20” + “152016”
    “20152016” = “201” + “52016”
    “20152016” = “2015” + “2016”

    【题解】

    用记忆化搜索来搞;
    int f(int x,int len);
    表示当前的下标为x,然后把x->x+len-1这一段化为一段的方案数;
    (这整个int可以理解为以x为左端点,长度不小于len的方案数);
    一开始调用f(1,1);
    表示获取以1为左端点,长度不小于1的方案数;
    具体实现如下

    int f(int x,int len)
    {
        if (s[x]=='0')//如果这个数字为0则范围方案数为0
            return 0;
        if (x+len-1 > n)//如果这一段划分超过了边界则无解
            return 0;
        if (x+len-1 == n)//如果恰好为n,那直接返回1
            return 1;
        if (ans[x][len]!=-1)//如果之前已经找过这个答案了;那么返回记录的答案;
            return ans[x][len];
        int ret = 0;
        ret = f(x,len+1);//递归求解子问题比如f(1,2),f(1,3);
        int a = get_lca(x,x+len);//这个表示以x..x+len-1这一段为一段;查看接下来要分那一段;这里的lca是x和x+len这两个位置后面相同的字符的个数->用于比较,从第一个不相同的数字开始比较
        if (a>=len || (a<len && s[x+a]>=s[x+len+a]))//x+a和x+len+a分别是两个字符串第一个不同的位置的下标
            ret+=f(x+len,len+1);//如果前面那个大于后面那个;则后面那个字符串只能通过增加一位长度来比它大
        else
                ret+=f(x+len,len);//否则,因为后面那个比较大,所以长度可以一样;
        if (ret >= MOD) ret-=MOD;//加法的取模可以直接减掉;
        ans[x][len] = ret;//记录答案;
        return ret;
    }

    完整代码↓↓

    #include <cstdio>
    #include <cstdlib>
    #include <cmath>
    #include <set>
    #include <map>
    #include <iostream>
    #include <algorithm>
    #include <cstring>
    #include <queue>
    #include <vector>
    #include <stack>
    #include <string>
    #define lson L,m,rt<<1
    #define rson m+1,R,rt<<1|1
    #define LL long long
    
    using namespace std;
    
    const int MAXN = 5010;
    const int MOD = 1e9+7;
    const int dx[5] = {0,1,-1,0,0};
    const int dy[5] = {0,0,0,-1,1};
    const double pi = acos(-1.0);
    
    int n,lca[MAXN][MAXN],ans[MAXN][MAXN];
    char s[MAXN];
    
    void input_LL(LL &r)
    {
        r = 0;
        char t = getchar();
        while (!isdigit(t) && t!='-') t = getchar();
        LL sign = 1;
        if (t == '-')sign = -1;
        while (!isdigit(t)) t = getchar();
        while (isdigit(t)) r = r * 10 + t - '0', t = getchar();
        r = r*sign;
    }
    
    void input_int(int &r)
    {
        r = 0;
        char t = getchar();
        while (!isdigit(t)&&t!='-') t = getchar();
        int sign = 1;
        if (t == '-')sign = -1;
        while (!isdigit(t)) t = getchar();
        while (isdigit(t)) r = r * 10 + t - '0', t = getchar();
        r = r*sign;
    }
    
    int get_lca(int x,int y)
    {
        if (x > n || y>n)
            return 0;
        if (lca[x][y]!=-1)
            return lca[x][y];
        int ret = 0;
        if (s[x]==s[y])
            ret += get_lca(x+1,y+1)+1;
        lca[x][y] = ret;
        return ret;
    }
    
    int f(int x,int len)
    {
        if (s[x]=='0')
            return 0;
        if (x+len-1 > n)
            return 0;
        if (x+len-1 == n)
            return 1;
        if (ans[x][len]!=-1)
            return ans[x][len];
        int ret = 0;
        ret = f(x,len+1);
        int a = get_lca(x,x+len);
        if (a>=len || (a<len && s[x+a]>=s[x+len+a]))
            ret+=f(x+len,len+1);
        else
                ret+=f(x+len,len);
        if (ret >= MOD) ret-=MOD;
        ans[x][len] = ret;
        return ret;
    }
    
    int main()
    {
        //freopen("F:\rush.txt","r",stdin);
        memset(lca,255,sizeof(lca));
        memset(ans,255,sizeof(ans));
        input_int(n);
        scanf("%s",s+1);
        printf("%d",f(1,1));
        return 0;
    }
  • 相关阅读:
    九度oj 题目1465:最简真分数
    九度oj 题目1083:特殊乘法 清华大学2010年机试题目
    九度oj 题目1084:整数拆分 清华大学2010年机试题目
    九度oj 题目1085:求root(N, k) 清华2010年机试题目
    九度oj 题目1460:Oil Deposit
    九度oj 题目1459:Prime ring problem
    九度oj 题目1458:汉诺塔III
    九度oj 题目1457:非常可乐
    题目1451:不容易系列之一
    移动端滚动不流畅,添加-webkit-overflow-scrolling属性 值为touch
  • 原文地址:https://www.cnblogs.com/AWCXV/p/7632092.html
Copyright © 2011-2022 走看看