zoukankan      html  css  js  c++  java
  • 【37.38%】【codeforces 722C】Destroying Array

    time limit per test1 second
    memory limit per test256 megabytes
    inputstandard input
    outputstandard output
    You are given an array consisting of n non-negative integers a1, a2, …, an.

    You are going to destroy integers in the array one by one. Thus, you are given the permutation of integers from 1 to n defining the order elements of the array are destroyed.

    After each element is destroyed you have to find out the segment of the array, such that it contains no destroyed elements and the sum of its elements is maximum possible. The sum of elements in the empty segment is considered to be 0.

    Input
    The first line of the input contains a single integer n (1 ≤ n ≤ 100 000) — the length of the array.

    The second line contains n integers a1, a2, …, an (0 ≤ ai ≤ 109).

    The third line contains a permutation of integers from 1 to n — the order used to destroy elements.

    Output
    Print n lines. The i-th line should contain a single integer — the maximum possible sum of elements on the segment containing no destroyed elements, after first i operations are performed.

    Examples
    input
    4
    1 3 2 5
    3 4 1 2
    output
    5
    4
    3
    0
    input
    5
    1 2 3 4 5
    4 2 3 5 1
    output
    6
    5
    5
    1
    0
    input
    8
    5 5 4 4 6 6 5 5
    5 2 8 7 1 3 4 6
    output
    18
    16
    11
    8
    8
    6
    6
    0
    Note
    Consider the first sample:

    Third element is destroyed. Array is now 1 3  *  5. Segment with maximum sum 5 consists of one integer 5.
    Fourth element is destroyed. Array is now 1 3  *   * . Segment with maximum sum 4 consists of two integers 1 3.
    First element is destroyed. Array is now  *  3  *   * . Segment with maximum sum 3 consists of one integer 3.
    Last element is destroyed. At this moment there are no valid nonempty segments left in this array, so the answer is equal to 0.
    【题解】

    线段树区间合并
    每次删掉一个节点;
    类似hotel那题,不同的是变成求连续的块的最大和。
    可以在求连续块的基础上做一些加法运算求和。
    每次操作完更新完之后输出mlx[1]即可(根节点代表整个区间);

    #include <cstdio>
    #include <algorithm>
    
    using namespace std;
    
    const int MAXN = 109000;
    
    int n, m;
    int  llianxusum[MAXN<<2], rlianxusum[MAXN<<2];
    long long mllx[MAXN<<2], mrlx[MAXN<<2], mlx[MAXN<<2];
    
    void build(int l, int r, int rt)
    {
        llianxusum[rt] = rlianxusum[rt] = r - l + 1;
        if (l == r)
        {
            scanf("%I64d", &mlx[rt]);
            mllx[rt] = mrlx[rt] = mlx[rt];
            return;
        }
        int mid = (l + r) >> 1;
        build(l, mid, rt << 1);
        build(mid + 1, r, rt << 1 | 1);
        mlx[rt] = mllx[rt] = mrlx[rt] = mlx[rt << 1] + mlx[rt << 1 | 1];
    }
    
    void push_up(int rt, int len)
    {
        llianxusum[rt] = llianxusum[rt << 1];
        mllx[rt] = mllx[rt << 1];
        if (llianxusum[rt] == len - (len >> 1))
        {
            llianxusum[rt] += llianxusum[rt << 1 | 1];
            mllx[rt] += mllx[rt << 1 | 1];//连续的序列和也可以递增
        }
        rlianxusum[rt] = rlianxusum[rt << 1 | 1];
        mrlx[rt] = mrlx[rt << 1 | 1];
        if (rlianxusum[rt] == len >> 1)
        {
            rlianxusum[rt] += rlianxusum[rt << 1];
            mrlx[rt] += mrlx[rt << 1];//同理
        }
        mlx[rt] = max(mlx[rt << 1], mlx[rt << 1 | 1]);
        mlx[rt] = max(mlx[rt], mrlx[rt << 1] + mllx[rt << 1 | 1]);
        //整个区间的连续空格子数就没必要记录了。
        //直接整个区间的最大和就好。
    }
    
    void updata(int pos, int begin, int end, int rt)
    {
        if (begin == end)
        {
            llianxusum[rt] = rlianxusum[rt] = 0;
            mlx[rt] = mllx[rt] = mrlx[rt] = 0;
            return;
        }
        int m = (begin + end) >> 1;
        if (pos <= m)
            updata(pos, begin, m, rt << 1);
        else
            updata(pos, m + 1, end, rt << 1 | 1);
        push_up(rt, end - begin + 1);
    }
    
    int main()
    {
        //freopen("F:\rush.txt", "r", stdin);
        //freopen("F:\rush_out.txt", "w", stdout);
        scanf("%d", &n);
        build(1, n, 1);
        for (int i = 1; i <= n; i++)
        {
            int x;
            scanf("%d", &x);
            updata(x, 1, n, 1);
            printf("%I64d
    ", mlx[1]);
        }
        return 0;
    }
  • 相关阅读:
    【.Net Micro Framework PortingKit 07】NVIC中断处理
    【.Net Micro Framework PortingKit 02】STM3210E平台构建
    【.Net Micro Framework PortingKit 06】设置芯片时钟
    【.Net Micro Framework PortingKit 03】调试初步:点亮LED灯
    【.Net Micro Framework PortingKit 01】移植初步:环境搭建
    开源System.Windows.Forms库,让.Net Micro Framework界面开发和上位机一样简单
    RVDS和MDK嵌入式开发工具调试脚本编写
    JQuery移除事件 简单
    Visual C++ 2008入门经典 第十六章 创建文档和改进视图 简单
    Visual C++ 2008入门经典 第十五章 在窗口中绘图 简单
  • 原文地址:https://www.cnblogs.com/AWCXV/p/7632196.html
Copyright © 2011-2022 走看看