题意
给定平面直角坐标系内的N(N <= 20)个点,每四个点构成一个正方形可以消去,问最多可以消去几个点。
思路
比赛的时候暴力dfs+O(n^4)枚举写过了……无意间看到有题解用状压DP(这才是正解吧T_T),然后自己才恍然大悟- -……
点不多嘛,用一个20位的整数表示各个点。先O(n^4)枚举出所有正方形情况,然后把这20位当背包,每种情况的二进制位当物品,做01背包就可以了.
似乎遇到N = 10+、20+的都应该想想状态压缩>.<……
代码
[cpp]
#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <string>
#include <cstring>
#include <vector>
#include <set>
#include <stack>
#include <queue>
#define MID(x,y) ((x+y)/2)
#define MEM(a,b) memset(a,b,sizeof(a))
#define REP(i, begin, end) for (int i = begin; i <= end; i ++)
using namespace std;
vector <int> v;
struct Point{
int x, y;
}p[25];
bool cmp(Point p1, Point p2){
if (p1.x == p2.x)
return p1.y < p2.y;
else return p1.x < p2.x;
}
int dp[1050000];
int main(){
int n;
while(scanf("%d", &n)){
if (n < 0) break;
for (int i = 0; i < n; i ++){
scanf("%d %d", &p[i].x, &p[i].y);
}
sort(p, p+n, cmp);
v.clear();
for (int i = 0; i < n; i ++)
for (int j = i + 1; j < n; j ++)
if (p[i].x == p[j].x){
int dy = abs(p[i].y - p[j].y);
for (int k = j + 1; k < n; k ++)
if (p[k].y == p[i].y && p[k].x == p[i].x + dy)
for (int l = k + 1; l < n; l ++){
if (p[l].y == p[j].y && p[l].x == p[i].x + dy)
v.push_back((1<<i)|(1<<j)|(1<<k)|(1<<l));
}
}
MEM(dp, 0);
int res = 0;
for (int i = 0; i < (int)v.size(); i ++){
for (int mk = (1<<n)-1; mk >= 0; mk --){
if ((mk & v[i]) == v[i])
dp[mk] = max(dp[mk], dp[mk-v[i]]+4);
res = max(res, dp[mk]);
}
}
printf("%d
", res);
}
return 0;
}
[/cpp]