只看懂了CRT,EXCRT待补。。。。
心得:记不得这是第几次翻CRT了,每次都有迷迷糊糊的。。
中国剩余定理用来求解类似这样的方程组:
求解的过程中用到了同余方程。
x=a1( mod x1)
x=a2( mod x2)
x=a3( mod x3)
假设:
n1=a1( mod x1)
n2=a2( mod x2)
n3=a3( mod x3)
已知n1满足除以3余2,能不能使得n1+n2的和仍然满足%x1=a1?
所以n2应该是x2的倍数,其余同理。
所以当答案为n1+n2+n3时,n1应该是a2和a3的倍数,n2应该是a1和a3的倍数,n3应该是a1和a2的倍数。
所以这个问题的答案就可以转换为从a2和a3的LCM种找到满足%x1=a1的n1,(n2,n3同理)
数学上有一个定理:若x%c=b,则x/2 % c= b/2, 同理(x*k)%c=(b*k)%c。
假设c1=lcm(x2,x3),c1*(c1的逆元)=1 ( mod ) x1。然后两边同时乘a1就是a1*c1*(c1的逆元)=a1(mod x1).
所以n1=a1*c1*(c1关于x1的逆元)
n2的求法类似.然后累加就好了。
code:
void exgcd(ll a,ll b,ll &x,ll &y){ if(b==0) { x=1;y=0; } else { exgcd(b,a%b,y,x); y-=(a/b)*x; } } ll china(int a[],int m[],int n){//m是余数数组,a是模数数组,n是等式的个数 ll M=1,x,y; ll ans=0; for(ll i=1;i<=n;i++) M*=a[i]; for(ll i=1;i<=n;i++){ ll w=M/a[i]; exgcd(w,a[i],x,y); ans=(ans+m[i]*w*x)%M; } return (ans+M)%M; }