zoukankan      html  css  js  c++  java
  • 2018 Multi-University Training Contest 3

    好像克拉丽丝小姐姐题解写的超详细我都没啥好说的了

    Problem A. Ascending Rating

    仔细一看m是固定的单调DQ就好了

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 typedef long long LL;
     4 const int maxn = 1e7 + 10;
     5 int st, ed, deq[maxn];
     6 int a[maxn];
     7 
     8 inline void add(int i) {
     9     while(st < ed && a[deq[ed]] <= a[i]) ed--;
    10     deq[++ed] = i;
    11 }
    12 
    13 int main() {
    14     int T;
    15     scanf("%d", &T);
    16     while(T--) {
    17         int n, m, k, p, q, r, MOD;
    18         scanf("%d %d %d %d %d %d %d", &n, &m, &k, &p, &q, &r, &MOD);
    19         for(int i = 1; i <= k; ++i) scanf("%d", a + i);
    20         for(int i = k + 1; i <= n; ++i) a[i] = ((LL) p * a[i - 1] + (LL) q * i + r) % MOD;
    21         LL A = 0, B = 0;
    22         st = ed = 0;
    23         for(int i = n; i >= n - m + 2; --i) add(i);
    24         for(int i = n - m + 1; i >= 1; --i) {
    25             add(i);
    26             while(st < ed && deq[st + 1] > i + m - 1) st++;
    27             A += a[deq[st + 1]] ^ i;
    28             B += (ed - st) ^ i;
    29         }
    30         printf("%lld %lld
    ", A, B);
    31     }
    32     return 0;
    33 }
    Aguin

    Problem B. Cut The String

    回文树好像不太会会阿?

    Problem C. Dynamic Graph Matching

    被卡怕了吓得用$2^{n-2}$枚举三段拼起来……

    还肥肠纸张的用int加了两次没取模!

    还有很多人问这个枚举顺序其实没有影响阿……

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 const int mod = 1e9 + 7;
     4 int cnt[1<<11], ans[6];
     5 int ppc[1<<11];
     6 
     7 int main() {
     8     for(int i = 0; i < (1 << 11); ++i) ppc[i] = __builtin_popcountll(i) / 2;
     9     int T;
    10     scanf("%d", &T);
    11     while(T--) {
    12         int n, m;
    13         scanf("%d %d", &n, &m);
    14         for(int i = 0; i < (1 << n); ++i) cnt[i] = 0;
    15         cnt[0] = 1;
    16         for(int i = 0; i <= n / 2; ++i) ans[i] = 0;
    17         for(int i = 1; i <= m; ++i) {
    18             char s[11];
    19             int u, v;
    20             scanf("%s %d %d", s, &u, &v);
    21             if(u > v) swap(u, v);
    22             int msk1 = (1 << (u - 1)) | (1 << (v - 1));
    23             for(int j = 0; j < (1 << (n - v)); ++j) {
    24                 for(int k = 0; k < (1 << (v - u - 1)); ++k) {
    25                     for(int p = 0; p < (1 << (u - 1)); ++p) {
    26                         int msk2 = (j << v) | (k << u) | p;
    27                         ans[ppc[msk2|msk1]] = (ans[ppc[msk2|msk1]] + mod - cnt[msk2|msk1]) % mod;
    28                         if(s[0] == '+') cnt[msk2|msk1] = (cnt[msk2|msk1] + cnt[msk2]) % mod;
    29                         else cnt[msk2|msk1] = (cnt[msk2|msk1] + mod - cnt[msk2]) % mod;
    30                         ans[ppc[msk2|msk1]] = (ans[ppc[msk2|msk1]] + cnt[msk2|msk1]) % mod;
    31                     }
    32                 }
    33             }
    34             for(int i = 1; i <= n / 2; ++i) printf("%d%c", ans[i], i == n / 2 ? '
    ' : ' ');
    35         }
    36     }
    37     return 0;
    38 }
    Aguin

    Problem D. Euler Function

    谈学姐写的

     1 #include<bits/stdc++.h>
     2 using namespace std;
     3 long long T,i,j,k,n;
     4 int main()
     5 {
     6         scanf("%d",&T);
     7         while (T--)
     8         {
     9                 scanf("%lld",&n);
    10                 if (n==1) puts("5");
    11                 else printf("%lld
    ",n+5);
    12         }
    13 }
    谈学姐

    Problem E. Find The Submatrix

    抄抄题解

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 typedef long long LL;
     4 const LL inf = 1e18;
     5 LL w[101][3001], a[101][3001], f[101][4][2][10001];
     6 int m;
     7 
     8 LL tmp[10001];
     9 void solve(int i, int j, int o, int l, int r, int L, int R) {
    10     int mid = (l + r) >> 1, M;
    11     tmp[mid] = -inf;
    12     for(int x = max(L, mid - m); x <= min(mid, R); ++x)
    13         if(tmp[mid] < f[i - 1][j - o][o][x] + a[i][mid - x])
    14             tmp[mid] = f[i - 1][j - o][o][x] + a[i][mid - x], M = x;
    15     if(l < mid) solve(i, j, o, l, mid - 1, L, M);
    16     if(mid < r) solve(i, j, o, mid + 1, r, M, R);
    17 }
    18 
    19 int main() {
    20     int T;
    21     scanf("%d", &T);
    22     while(T--) {
    23         int n, A, B;
    24         scanf("%d %d %d %d", &n, &m, &A, &B);
    25         for(int i = 1; i <= n; ++i)
    26             for(int j = 1; j <= m; ++j)
    27                 scanf("%lld", &w[i][j]);
    28         for(int i = 1; i <= n; ++i) {
    29             sort(w[i] + 1, w[i] + 1 + m);
    30             a[i][m] = 0;
    31             for(int j = m - 1; j >= 0; --j) a[i][j] = a[i][j + 1] + w[i][j + 1];
    32         }
    33         for(int i = 0; i <= n; ++i)
    34             for(int j = 0; j <= B; ++j)
    35                 for(int k = 0; k <= 1; ++k)
    36                     for(int p = 0; p <= A; ++p)
    37                         f[i][j][k][p] = -inf;
    38         f[0][0][1][0] = 0;
    39         for(int i = 1; i <= n; ++i) {
    40             for(int j = 0; j <= B; ++j) {
    41                 // f[i][j][0][k] = max{f[i - 1][j][0][x] + a[i][k - x], f[i - 1][j - 1][1][x] + a[i][k - x]}
    42                 solve(i, j, 0, 0, A, 0, A);
    43                 for(int k = 0; k <= A; ++k) f[i][j][0][k] = max(f[i][j][0][k], tmp[k]);
    44                 if(j >= 1) {
    45                     solve(i, j, 1, 0, A, 0, A);
    46                     for(int k = 0; k <= A; ++k) f[i][j][0][k] = max(f[i][j][0][k], tmp[k]);
    47                 }
    48                 // f[i][j][1][k] = max{f[i - 1][j][0][k], f[i - 1][j][1][k]}
    49                 for(int k = 0; k <= A; ++k) f[i][j][1][k] = max(f[i - 1][j][0][k], f[i - 1][j][1][k]);
    50             }
    51         }
    52         LL ans = 0;
    53         for(int i = 0; i <= B; ++i)
    54             for(int j = 0; j <= 1; ++j)
    55                 for(int k = 0; k <= A; ++k)
    56                     ans = max(ans, f[n][i][j][k]);
    57         printf("%lld
    ", ans);
    58     }
    59     return 0;
    60 }
    Aguin

    Problem F. Grab The Tree

    谈学姐教我贪心!

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 
     4 int main() {
     5     int T;
     6     scanf("%d", &T);
     7     while(T--) {
     8         int n, x, sum = 0;
     9         scanf("%d", &n);
    10         for(int i = 1; i <= n; ++i) scanf("%d", &x), sum ^= x;
    11         for(int i = 1; i < n; ++i) {
    12             int u, v;
    13             scanf("%d %d", &u, &v);
    14         }
    15         puts(sum ? "Q" : "D");
    16     }
    17     return 0;
    18 }
    Aguin

    Problem G. Interstellar Travel

    一眼凸包写的时候忘了严格增……

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 const int maxn = 200000 + 10;
     4 typedef long long LL;
     5 LL x[maxn], y[maxn], id[maxn], st[maxn];
     6 bool cmp(LL i, LL j) {
     7     if(x[i] != x[j]) return x[i] < x[j];
     8     if(y[i] != y[j]) return y[i] > y[j];
     9     return i < j;
    10 }
    11 LL cross(LL i, LL j, LL k) {return (x[i] - x[k]) * (y[j] - y[k]) - (x[j] - x[k]) * (y[i] - y[k]);}
    12 vector<LL> L;
    13 int main() {
    14     int T;
    15     scanf("%d", &T);
    16     while (T--) {
    17         int n;
    18         scanf("%d", &n);
    19         for (int i = 1; i <= n; ++i) scanf("%lld %lld", x + i, y + i), id[i] = i;
    20         sort(id + 1, id + 1 + n, cmp);
    21         L.clear();
    22         for(int i = 1; i <= n; ++i) if(i == 1 || x[id[i]] > x[id[i-1]]) L.push_back(id[i]);
    23         int p = 0;
    24         for(int i = 0; i < L.size(); ++i) {
    25             while (p >= 2 && cross(st[p], L[i], st[p - 1]) > 0) p--;
    26             while (p >= 2 && cross(st[p], L[i], st[p - 1]) == 0 && L[i] < st[p]) p--;
    27             st[++p] = L[i];
    28         }
    29         for (int i = 1; i <= p; i++) printf("%lld%c", st[i], i == p ? '
    ' : ' ');
    30     }
    31     return 0;
    32 }
    Aguin

    Problem H. Monster Hunter

    cmp一直写不对被set去重掉了……

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 const int maxn = 1e5 + 10;
     4 typedef long long LL;
     5 LL a[maxn], b[maxn];
     6 vector<int> G[maxn];
     7 
     8 int fa[maxn], vis[maxn];
     9 void dfs(int x, int f) {
    10     fa[x] = f;
    11     for(int i = 0; i < G[x].size(); ++i) {
    12         int to = G[x][i];
    13         if(to == f) continue;
    14         dfs(to, x);
    15     }
    16 }
    17 
    18 int pa[maxn];
    19 int Find(int x) {
    20     return x == pa[x] ? x : pa[x] = Find(pa[x]);
    21 }
    22 
    23 struct node {
    24     int id;
    25     LL a, b;
    26     node(LL A = 0, LL B = 0, int ID = 0): a(A), b(B), id(ID) {}
    27     friend bool operator < (node A, node B) {
    28         if(A.b - A.a > 0 && B.b - B.a <= 0) return true;
    29         if(A.b - A.a == 0 && B.b - B.a < 0) return true;
    30         if(B.b - B.a > 0 && A.b - A.a <= 0) return false;
    31         if(B.b - B.a == 0 && A.b - A.a < 0) return false;
    32         if(A.b - A.a > 0) {
    33             if(A.a != B.a) return A.a < B.a;
    34             return A.id < B.id;
    35         }
    36         if(A.b != B.b) return A.b > B.b;
    37         return A.id < B.id;
    38     }
    39 };
    40 set<node> S;
    41 
    42 int main() {
    43     int T;
    44     scanf("%d", &T);
    45     while(T--) {
    46         int n;
    47         scanf("%d", &n);
    48         for(int i = 1; i <= n; ++i) G[i].clear(), pa[i] = i, vis[i] = 0;
    49         S.clear();
    50         for(int i = 2; i <= n; ++i)
    51             scanf("%lld %lld", a + i, b + i), S.insert(node(a[i], b[i], i));
    52         for(int i = 2; i <= n; ++i) {
    53             int u, v;
    54             scanf("%d %d", &u, &v);
    55             G[u].push_back(v), G[v].push_back(u);
    56         }
    57         dfs(1, 0);
    58         LL A = 0, B = 0;
    59         for(int i = 1; i < n; ++i) {
    60             int x = (*S.begin()).id;
    61             S.erase(S.begin());
    62             if(fa[x] == 1 || vis[Find(fa[x])]) {
    63                 LL t = b[x] + B - a[x] - A;
    64                 A = max(A, A - B + a[x]), B = A + t;
    65                 vis[x] = 1;
    66             }
    67             else {
    68                 int y = Find(fa[x]);
    69                 S.erase(S.find(node(a[y], b[y], y)));
    70                 LL t = b[x] + b[y] - a[x] - a[y];
    71                 a[y] = max(a[y], a[y] - b[y] + a[x]), b[y] = a[y] + t;
    72                 S.insert(node(a[y], b[y], y));
    73                 pa[x] = y;
    74             }
    75         }
    76         printf("%lld
    ", A);
    77     }
    78     return 0;
    79 }
    Aguin

    Problem I. Random Sequence

    感觉还是状态不太好想到吧……

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 typedef long long LL;
     4 const LL mod = 1e9 + 7;
     5 int gcd[101][101], a[101];
     6 LL f[2][101][101][101];
     7 vector<int> fac[101];
     8 LL v[101];
     9 
    10 LL fp(LL a, LL b) {
    11     LL ret = 1;
    12     while (b) {
    13         if (b & 1) ret = ret * a % mod;
    14         a = a * a % mod;
    15         b >>= 1;
    16     }
    17     return ret;
    18 }
    19 
    20 LL inv(LL x) {
    21     return fp(x, mod - 2);
    22 }
    23 
    24 int main() {
    25     for(int i = 1; i <= 100; ++i)
    26         for(int j = i; j <= 100; j += i)
    27             fac[j].push_back(i);
    28     for(int i = 1; i <= 100; ++i)
    29         for(int j = 1; j <= 100; ++j)
    30             gcd[i][j] = __gcd(i, j);
    31     int T;
    32     scanf("%d", &T);
    33     while(T--) {
    34         int n, m, c = 0;
    35         scanf("%d %d", &n, &m);
    36         for(int i = 1; i <= n; ++i) scanf("%d", a + i), c += a[i] == 0;
    37         for(int i = 1; i <= m; ++i) scanf("%lld", v + i);
    38         int o = 0;
    39         for(int i = 1; i <= m; ++i) {
    40             for(int j = 0; j < fac[i].size(); ++j) {
    41                 for(int k = 0; k < fac[fac[i][j]].size(); ++k) {
    42                     f[o][i][fac[i][j]][fac[fac[i][j]][k]] = 0;
    43                 }
    44             }
    45         }
    46         for(int i = 1; i <= m; ++i) {
    47             if(a[3] && a[3] != i) continue;
    48             for(int j = 1; j <= m; ++j) {
    49                 if(a[2] && a[2] != j) continue;
    50                 for(int k = 1; k <= m; ++k) {
    51                     if(a[1] && a[1] != k) continue;
    52                     f[o][i][gcd[i][j]][gcd[gcd[i][j]][k]]++;
    53                 }
    54             }
    55         }
    56         for(int p = 3; p < n; ++p) {
    57             for(int i = 1; i <= m; ++i) {
    58                 for(int j = 0; j < fac[i].size(); ++j) {
    59                     for(int k = 0; k < fac[fac[i][j]].size(); ++k) {
    60                         f[o ^ 1][i][fac[i][j]][fac[fac[i][j]][k]] = 0;
    61                     }
    62                 }
    63             }
    64             for(int i = 1; i <= m; ++i) {
    65                 if(a[p] && a[p] != i) continue;
    66                 for(int j = 0; j < fac[i].size(); ++j) {
    67                     if(a[p - 1] && gcd[a[p - 1]][i] != fac[i][j]) continue;
    68                     for(int k = 0; k < fac[fac[i][j]].size(); ++k) {
    69                         if(a[p - 2] && gcd[fac[i][j]][a[p - 2]] != fac[fac[i][j]][k]) continue;
    70                         for(int q = 1; q <= m; ++q) {
    71                             if(a[p + 1] && a[p + 1] != q) continue;
    72                             f[o ^ 1][q][gcd[q][i]][gcd[q][fac[i][j]]] = (f[o ^ 1][q][gcd[q][i]][gcd[q][fac[i][j]]] + v[gcd[q][fac[fac[i][j]][k]]] * f[o][i][fac[i][j]][fac[fac[i][j]][k]]) % mod;
    73                         }
    74                     }
    75                 }
    76             }
    77             o ^= 1;
    78         }
    79         LL ans = 0;
    80         for(int i = 1; i <= m; ++i) {
    81             for(int j = 0; j < fac[i].size(); ++j) {
    82                 for(int k = 0; k < fac[fac[i][j]].size(); ++k) {
    83                     ans = (ans + f[o][i][fac[i][j]][fac[fac[i][j]][k]]) % mod;
    84                 }
    85             }
    86         }
    87         printf("%lld
    ", ans * fp(inv(m), c) % mod);
    88     }
    89     return 0;
    90 }
    Aguin

    Problem J. Rectangle Radar Scanner

    快乐分治,好像每次加完点要删掉

      1 #include <bits/stdc++.h>
      2 using namespace std;
      3 typedef long long LL;
      4 const int maxn = 1e5 + 10;
      5 const int maxm = 1e6 + 10;
      6 LL xl[maxm], xr[maxm], yl[maxm], yr[maxm], P[maxm], MAX[maxm], MIN[maxm];
      7 LL k, y[maxn], w[maxn];
      8 int n;
      9 
     10 // seg
     11 const LL INF = 1e18;
     12 LL pr[maxn<<2], ma[maxn<<2], mi[maxn<<2];
     13 void gather(int p) {
     14     pr[p] = pr[p << 1] * pr[p << 1 | 1] % k;
     15     ma[p] = max(ma[p << 1], ma[p << 1 | 1]);
     16     mi[p] = min(mi[p << 1], mi[p << 1 | 1]);
     17 }
     18 void build(int p, int l, int r) {
     19     if (l < r) {
     20         int mid = (l + r) >> 1;
     21         build(p << 1, l, mid);
     22         build(p << 1 | 1, mid + 1, r);
     23         gather(p);
     24     } else pr[p] = 1, mi[p] = INF, ma[p] = -INF;
     25 }
     26 void modify(int p, int tl, int tr, int x, LL y) {
     27     if (tl == tr) {
     28         if (!y) pr[p] = 1, mi[p] = INF, ma[p] = -INF;
     29         else pr[p] = pr[p] * y % k, mi[p] = min(mi[p], y), ma[p] = max(ma[p], y);
     30         return;
     31     }
     32     int mid = (tl + tr) >> 1;
     33     if (x <= mid) modify(p << 1, tl, mid, x, y);
     34     else modify(p << 1 | 1, mid + 1, tr, x, y);
     35     gather(p);
     36 }
     37 typedef pair<LL, LL> pii;
     38 typedef pair<LL, pii> tr;
     39 tr operator + (tr A, tr B) {
     40     return {A.first * B.first % k, {max(A.second.first, B.second.first), min(A.second.second, B.second.second)}};
     41 }
     42 tr query(int p, int tl, int tr, int l, int r) {
     43     if (tl > tr) return {1, {-INF, INF}};
     44     if (tr < l || r < tl) return {1, {-INF, INF}};
     45     if (l <= tl && tr <= r) return {pr[p], {ma[p], mi[p]}};
     46     int mid = (tl + tr) >> 1;
     47     return query(p << 1, tl, mid, l, r) + query(p << 1 | 1, mid + 1, tr, l, r);
     48 }
     49 
     50 tr ret[maxm];
     51 bool cmp1(int i, int j) {return xl[i] > xl[j];}
     52 bool cmp2(int i, int j) {return xr[i] < xr[j];}
     53 void solve(int l, int r, vector<int> Q) {
     54     int mid = (l + r) >> 1, p;
     55     vector<int> QL, QM, QR;
     56     for(int i = 0; i < Q.size(); ++i) {
     57         int o = Q[i];
     58         if(l != r && xr[o] <= mid) QL.push_back(o);
     59         else if(l != r && xl[o] > mid) QR.push_back(o);
     60         else QM.push_back(o);
     61     }
     62     sort(QM.begin(), QM.end(), cmp1);
     63     p = mid + 1;
     64     for(int i = 0; i < QM.size(); ++i) {
     65         int o = QM[i];
     66         while(p > xl[o]) --p, modify(1, 1, n, y[p], w[p]);
     67         ret[o] = query(1, 1, n, yl[o], yr[o]);
     68     }
     69     while(p <= mid) modify(1, 1, n, y[p], 0), p++;
     70     p--;
     71     sort(QM.begin(), QM.end(), cmp2);
     72     for(int i = 0; i < QM.size(); ++i) {
     73         int o = QM[i];
     74         while(p < xr[o]) ++p, modify(1, 1, n, y[p], w[p]);
     75         ret[o] = ret[o] + query(1, 1, n, yl[o], yr[o]);
     76         if(ret[o].second.first == -INF) P[o] = MAX[o] = MIN[o] = 0;
     77         else P[o] = ret[o].first, MAX[o] = ret[o].second.first, MIN[o] = ret[o].second.second;
     78     }
     79     while(p > mid) modify(1, 1, n, y[p], 0), p--;
     80     if(!QL.empty()) solve(1, mid, QL);
     81     if(!QR.empty()) solve(mid + 1, r, QR);
     82 }
     83 
     84 int main() {
     85     int T;
     86     scanf("%d", &T);
     87     while(T--) {
     88         scanf("%d", &n);
     89         for(int i = 1; i <= n; ++i) scanf("%lld %lld", y + i, w + i);
     90         LL m, a0, b0, c0, d0, p, q, r, MOD;
     91         scanf("%lld %lld %lld %lld %lld %lld %lld %lld %lld %lld", &m, &a0, &b0, &c0, &d0, &p, &q, &r, &MOD, &k);
     92         vector<int> Q;
     93         for(int i = 1; i <= m; ++i) {
     94             LL ai = (p * a0 + q * b0 + r) % MOD;
     95             LL bi = (p * b0 + q * a0 + r) % MOD;
     96             LL ci = (p * c0 + q * d0 + r) % MOD;
     97             LL di = (p * d0 + q * c0 + r) % MOD;
     98             a0 = ai, b0 = bi, c0 = ci, d0 = di;
     99             xl[i] = a0 % n + 1, xr[i] = b0 % n + 1;
    100             if(xl[i] > xr[i]) swap(xl[i], xr[i]);
    101             yl[i] = c0 % n + 1, yr[i] = d0 % n + 1;
    102             if(yl[i] > yr[i]) swap(yl[i], yr[i]);
    103             Q.push_back(i);
    104         }
    105         build(1, 1, n), solve(1, n, Q);
    106         LL ans = 0;
    107         for(int i = 1; i <= m; ++i) ans = ans + (P[i] ^ MAX[i] ^ MIN[i]);
    108         printf("%lld
    ", ans);
    109     }
    110     return 0;
    111 }
    Aguin

    Problem K. Transport Construction

    那个牛逼哄哄的Boruvka?啥玩意儿好像就是每次对每个连通块找到边权最小的边,把这些边合并一下下,这样每次连通块至少减少一半,所以只有logn次

    然后点乘最小就是拿一个垂线从下往上扫一下,最先碰到的就是投影最小的,所以一定在下凸壳上

    然后再每次按连通块编号快乐分治,下凸壳里面是斜率递增的,所以询问的向量也按斜率递增排,双指针搞搞,好像也没有啥要注意的……

      1 #include <bits/stdc++.h>
      2 using namespace std;
      3 const int maxn = 1e5 + 10;
      4 typedef long long LL;
      5 typedef pair<int, int> pii;
      6 LL X[maxn], Y[maxn];
      7 LL cross(int i, int j, int k) {return (X[i] - X[k]) * (Y[j] - Y[k]) - (Y[i] - Y[k]) * (X[j] - X[k]);}
      8 LL dot(int i, int j) {return X[i] * X[j] + Y[i] * Y[j];}
      9 
     10 // UF
     11 int fa[maxn];
     12 int Find(int x) {
     13     return fa[x] == x ? x : fa[x] = Find(fa[x]);
     14 }
     15 void Union(int x, int y) {
     16     fa[Find(x)] = Find(y);
     17 }
     18 
     19 // Tarjan
     20 stack<int> S;
     21 vector<int> G[maxn], bcc[maxn];
     22 int dfs_clock, dfn[maxn], low[maxn];
     23 int bcc_cnt, bccno[maxn];
     24 void dfs(int u) {
     25     dfn[u] = low[u] = ++dfs_clock;
     26     S.push(u);
     27     for (int i = 0; i < G[u].size(); i++) {
     28         int v = G[u][i];
     29         if (!dfn[v]) {
     30             dfs(v);
     31             low[u] = min(low[u], low[v]);
     32         } else if (!bccno[v]) low[u] = min(low[u], dfn[v]);
     33     }
     34     if (low[u] == dfn[u]) {
     35         bcc_cnt++;
     36         while (1) {
     37             int x = S.top();
     38             S.pop();
     39             bccno[x] = bcc_cnt;
     40             bcc[bcc_cnt].push_back(x);
     41             if (x == u) break;
     42         }
     43     }
     44 }
     45 void find_bcc(int n) {
     46     dfs_clock = bcc_cnt = 0;
     47     for (int i = 1; i <= n; ++i) dfn[i] = bccno[i] = 0, bcc[i].clear();
     48     for (int i = 1; i <= n; i++) if (!dfn[i]) dfs(i);
     49 }
     50 
     51 // D & C
     52 LL M[maxn];
     53 pii pr[maxn];
     54 bool cmpx(int i, int j) {return X[i] < X[j];}
     55 bool cmpk(int i, int j) {return Y[i] * X[j] < Y[j] * X[i];}
     56 vector<int> hull[maxn << 2], line[maxn << 2];
     57 void solve(int p, int l, int r) {
     58     hull[p].clear(), line[p].clear();
     59     if(l == r) {
     60         line[p] = bcc[l];
     61         sort(line[p].begin(), line[p].end(), cmpx);
     62         for(int i = 0; i < line[p].size(); ++i) {
     63             int x = line[p][i], sz = hull[p].size();
     64             while(sz > 1 && cross(hull[p][sz - 1], x, hull[p][sz - 2]) <= 0) hull[p].pop_back(), sz--;
     65             hull[p].push_back(x);
     66         }
     67         sort(line[p].begin(), line[p].end(), cmpk);
     68         return;
     69     }
     70     int mid = (l + r) / 2, p1 = 0, p2 = 0;
     71     solve(p << 1, l, mid), solve(p << 1 | 1, mid + 1, r);
     72     for(int i = 0; i < line[p << 1].size(); ++i) {
     73         int x = line[p << 1][i], bx = bccno[x];
     74         while(p1 + 1 < hull[p << 1 | 1].size() && dot(x, hull[p << 1 | 1][p1 + 1]) <= dot(x, hull[p << 1 | 1][p1])) p1++;
     75         int y = hull[p << 1 | 1][p1];
     76         LL DOT = dot(x, y);
     77         if(DOT <= M[bx]) M[bx] = DOT, pr[bx] = pii(x, y);
     78     }
     79     for(int i = 0; i < line[p << 1 | 1].size(); ++i) {
     80         int x = line[p << 1 | 1][i], bx = bccno[x];
     81         while(p2 + 1 < hull[p << 1].size() && dot(x, hull[p << 1][p2 + 1]) <= dot(x, hull[p << 1][p2])) p2++;
     82         int y = hull[p << 1][p2];
     83         LL DOT = dot(x, y);
     84         if(DOT <= M[bx]) M[bx] = DOT, pr[bx] = pii(x, y);
     85     }
     86     p1 = p2 = 0;
     87     while(p1 < line[p << 1].size() || p2 < line[p << 1 | 1].size()) {
     88         if(p1 == line[p << 1].size()) line[p].push_back(line[p << 1 | 1][p2++]);
     89         else if(p2 == line[p << 1 | 1].size() || cmpk(line[p << 1][p1], line[p << 1 | 1][p2])) line[p].push_back(line[p << 1][p1++]);
     90         else line[p].push_back(line[p << 1 | 1][p2++]);
     91     }
     92     p1 = p2 = 0;
     93     while(p1 < hull[p << 1].size() || p2 < hull[p << 1 | 1].size()) {
     94         int x, sz = hull[p].size();
     95         if(p1 == hull[p << 1].size()) x = hull[p << 1 | 1][p2++];
     96         else if(p2 == hull[p << 1 | 1].size() || cmpx(hull[p << 1][p1], hull[p << 1 | 1][p2])) x = hull[p << 1][p1++];
     97         else x = hull[p << 1 | 1][p2++];
     98         while(sz > 1 && cross(hull[p][sz - 1], x, hull[p][sz - 2]) <= 0) hull[p].pop_back(), sz--;
     99         hull[p].push_back(x);
    100     }
    101 }
    102 
    103 int main() {
    104     int T;
    105     scanf("%d", &T);
    106     while(T--) {
    107         LL ans = 0;
    108         int n, cnt = 0;
    109         scanf("%d", &n);
    110         for(int i = 1; i <= n; ++i) scanf("%lld %lld", X + i, Y + i), fa[i] = i, G[i].clear();
    111         while(cnt < n - 1) {
    112             find_bcc(n);
    113             for(int i = 1; i <= bcc_cnt; ++i) M[i] = 1e18;
    114             solve(1, 1, bcc_cnt);
    115             for(int i = 1; i <= bcc_cnt; ++i) {
    116                 int x = pr[i].first, y = pr[i].second;
    117                 if(Find(x) == Find(y)) continue;
    118                 Union(x, y), ans += M[i], cnt++;
    119                 G[x].push_back(y), G[y].push_back(x);
    120             }
    121         }
    122         printf("%lld
    ", ans);
    123     }
    124     return 0;
    125 }
    Aguin

    Problem L. Visual Cube

    甩锅给谈学姐他竟然写不出来

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 
     4 void printChar(int n, char c) {
     5     if (n <= 0) return;
     6     while (n--) putchar(c);
     7     return;
     8 }
     9 
    10 int main () {
    11     int a, b, c, N;
    12     scanf("%d", &N);
    13     while (N--) {
    14         scanf("%d%d%d", &a, &b, &c);
    15         int pnts;
    16         for (int i = 0; i < 2 * c + 2 * b + 1; i++) {
    17             printChar(2 * b - i, '.');
    18             for (int j = 0; j < 2 * a + 1; j++) {
    19                 if (i % 2)
    20                     putchar((j%2)?'.':((2 * b > i)?'/':'|'));
    21                 else
    22                     putchar((j%2)?'-':'+');
    23             }
    24             pnts = 2 * a;
    25             if (2 * b > i) pnts += 2 * b - i;
    26             for (int j = pnts; j < 2 * a + 2 * b; j++) {
    27                 if (i >= 2 * c + 1 && j >= 2 * (b + a + c) - i)
    28                     putchar('.');
    29                 else
    30                     if (i % 2)
    31                         putchar((j%2)?'|':'/');
    32                     else
    33                         putchar((j%2)?'+':'.');
    34             }
    35             puts("");
    36         }
    37     }
    38 }
    摸瑜瑜

    Problem M. Walking Plan

    其实应该先做一遍Floyd……

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 typedef long long LL;
     4 const LL INF = 1e18;
     5 LL a[101][55][55], b[101][55][55];
     6 
     7 int main() {
     8     int T;
     9     scanf("%d", &T);
    10     while(T--) {
    11         int n, m, q;
    12         scanf("%d %d", &n, &m);
    13         for(int i = 1; i <= n; ++i)
    14             for(int j = 1; j <= n; ++j)
    15                 b[1][i][j] = INF;
    16         for(int i = 1; i <= m; ++i) {
    17             int u, v, w;
    18             scanf("%d %d %d", &u, &v, &w);
    19             b[1][u][v] = min(b[1][u][v], (LL) w);
    20         }
    21         for(int j = 1; j <= n; ++j)
    22             for(int k = 1; k <= n; ++k)
    23                 for(int p = 1; p <= n; ++p)
    24                     b[1][k][p] = min(b[1][k][p], b[1][k][j] + b[1][j][p]);
    25         for(int i = 2; i <= 100; ++i) {
    26             for(int j = 1; j <= n; ++j)
    27                 for(int k = 1; k <= n; ++k)
    28                     b[i][j][k] = INF;
    29             for(int j = 1; j <= n; ++j)
    30                 for(int k = 1; k <= n; ++k)
    31                     for(int p = 1; p <= n; ++p)
    32                         b[i][k][p] = min(b[i][k][p], b[i - 1][k][j] + b[1][j][p]);
    33         }
    34         for(int j = 1; j <= n; ++j)
    35             for(int k = 1; k <= n; ++k)
    36                 a[1][j][k] = b[100][j][k];
    37         for(int i = 2; i <= 100; ++i) {
    38             for(int j = 1; j <= n; ++j)
    39                 for(int k = 1; k <= n; ++k)
    40                     a[i][j][k] = INF;
    41             for(int j = 1; j <= n; ++j)
    42                 for(int k = 1; k <= n; ++k)
    43                     for(int p = 1; p <= n; ++p)
    44                         a[i][k][p] = min(a[i][k][p], a[i - 1][k][j] + a[1][j][p]);
    45         }
    46         scanf("%d", &q);
    47         while(q--) {
    48             int s, t, k;
    49             scanf("%d %d %d", &s, &t, &k);
    50             int A = (k - 1) / 100, B = k % 100 == 0 ? 100 : k % 100;
    51             LL ans = INF;
    52             if(A) for(int i = 1; i <= n; ++i) ans = min(ans, a[A][s][i] + b[B][i][t]);
    53             else ans = min(ans, b[B][s][t]);
    54             printf("%lld
    ", ans == INF ? -1 : ans);
    55         }
    56     }
    57     return 0;
    58 }
    Aguin
  • 相关阅读:
    EasyNVR播放HLS协议时ts文件报错404是什么问题?
    【操作步骤】EasyNVR硬件设备如何设置通电不自动启动?
    C#实现QQ接口软件QQ的HTTP接口协议探究
    第一篇随笔
    Extjs继承相关
    Montgomery乘法介绍
    中国商用密码杂凑算法标准SM3算法(数字签名)
    c语言链接动态库dll
    环、商环、整数环
    大数据挖掘技术及应用(复习重点)
  • 原文地址:https://www.cnblogs.com/Aguin/p/9399842.html
Copyright © 2011-2022 走看看