zoukankan      html  css  js  c++  java
  • 深度学习——02、深度学习入门——python实现RNN算法

    实际问题:二进制加法

    在这里插入图片描述
    1.遵循加法的规则
    2.逢二进一

    当前位的加法还要考虑前一位的进位。

    完整代码

    import copy, numpy as np
    np.random.seed(0)
    
    # compute sigmoid nonlinearity
    def sigmoid(x):
        output = 1/(1+np.exp(-x))
        return output
    
    # convert output of sigmoid function to its derivative
    def sigmoid_output_to_derivative(output):
        return output*(1-output)
    
    
    # training dataset generation
    int2binary = {}
    binary_dim = 8
    
    largest_number = pow(2,binary_dim)
    binary = np.unpackbits(
        np.array([range(largest_number)],dtype=np.uint8).T,axis=1)
    for i in range(largest_number):
        int2binary[i] = binary[i]
    
    
    # input variables
    alpha = 0.1
    input_dim = 2
    hidden_dim = 16
    output_dim = 1
    
    
    # initialize neural network weights
    synapse_0 = 2*np.random.random((input_dim,hidden_dim)) - 1
    synapse_1 = 2*np.random.random((hidden_dim,output_dim)) - 1
    synapse_h = 2*np.random.random((hidden_dim,hidden_dim)) - 1
    
    synapse_0_update = np.zeros_like(synapse_0)
    synapse_1_update = np.zeros_like(synapse_1)
    synapse_h_update = np.zeros_like(synapse_h)
    
    # training logic
    for j in range(10000):
        
        # generate a simple addition problem (a + b = c)
        a_int = np.random.randint(largest_number/2) # int version
        a = int2binary[a_int] # binary encoding
    
        b_int = np.random.randint(largest_number/2) # int version
        b = int2binary[b_int] # binary encoding
    
        # true answer
        c_int = a_int + b_int
        c = int2binary[c_int]
        
        # where we'll store our best guess (binary encoded)
        d = np.zeros_like(c)
    
        overallError = 0
        
        layer_2_deltas = list()
        layer_1_values = list()
        layer_1_values.append(np.zeros(hidden_dim))
        
        # moving along the positions in the binary encoding
        for position in range(binary_dim):
            
            # generate input and output
            X = np.array([[a[binary_dim - position - 1],b[binary_dim - position - 1]]])
            y = np.array([[c[binary_dim - position - 1]]]).T
    
            # hidden layer (input ~+ prev_hidden)
            layer_1 = sigmoid(np.dot(X,synapse_0) + np.dot(layer_1_values[-1],synapse_h))
    
            # output layer (new binary representation)
            layer_2 = sigmoid(np.dot(layer_1,synapse_1))
    
            # did we miss?... if so, by how much?
            layer_2_error = y - layer_2
            layer_2_deltas.append((layer_2_error)*sigmoid_output_to_derivative(layer_2))
            overallError += np.abs(layer_2_error[0])
        
            # decode estimate so we can print it out
            d[binary_dim - position - 1] = np.round(layer_2[0][0])
            
            # store hidden layer so we can use it in the next timestep
            layer_1_values.append(copy.deepcopy(layer_1))
        
        future_layer_1_delta = np.zeros(hidden_dim)
        
        for position in range(binary_dim):
            
            X = np.array([[a[position],b[position]]])
            layer_1 = layer_1_values[-position-1]
            prev_layer_1 = layer_1_values[-position-2]
            
            # error at output layer
            layer_2_delta = layer_2_deltas[-position-1]
            # error at hidden layer
            layer_1_delta = (future_layer_1_delta.dot(synapse_h.T) + layer_2_delta.dot(synapse_1.T)) * sigmoid_output_to_derivative(layer_1)
    
            # let's update all our weights so we can try again
            synapse_1_update += np.atleast_2d(layer_1).T.dot(layer_2_delta)
            synapse_h_update += np.atleast_2d(prev_layer_1).T.dot(layer_1_delta)
            synapse_0_update += X.T.dot(layer_1_delta)
            
            future_layer_1_delta = layer_1_delta
        
    
        synapse_0 += synapse_0_update * alpha
        synapse_1 += synapse_1_update * alpha
        synapse_h += synapse_h_update * alpha    
    
        synapse_0_update *= 0
        synapse_1_update *= 0
        synapse_h_update *= 0
        
        # print out progress
        if(j % 1000 == 0):
            print ("Error:" + str(overallError))
            print ("Pred:" + str(d))
            print ("True:" + str(c))
            out = 0
            for index,x in enumerate(reversed(d)):
                out += x*pow(2,index)
            print (str(a_int) + " + " + str(b_int) + " = " + str(out))
            print ("------------")
    
    
            
    

    代码分析

    激活函数及其求导:

    # compute sigmoid nonlinearity
    # 激活函数sigmoid
    def sigmoid(x):
        output = 1/(1+np.exp(-x))
        return output
    
    # convert output of sigmoid function to its derivative
    # 反向传播sigmoid的导数值
    def sigmoid_output_to_derivative(output):
        return output*(1-output)
    

    十进制与二进制的对应关系:

    # training dataset generation
    int2binary = {}
    binary_dim = 8
    
    largest_number = pow(2,binary_dim)
    binary = np.unpackbits(
        np.array([range(largest_number)],dtype=np.uint8).T,axis=1)
    for i in range(largest_number):
        int2binary[i] = binary[i]
    

    网络初始化:

    # input variables
    alpha = 0.1
    input_dim = 2
    # 定义输入的维度,即两个数
    hidden_dim = 16
    # 16个中间神经元
    output_dim = 1
    # 定义输出的维度,即一个数
    

    在这里插入图片描述
    初始化w0、w1、wh:

    # initialize neural network weights
    synapse_0 = 2*np.random.random((input_dim,hidden_dim)) - 1
    synapse_1 = 2*np.random.random((hidden_dim,output_dim)) - 1
    synapse_h = 2*np.random.random((hidden_dim,hidden_dim)) - 1
    
    # 更新参数的值
    synapse_0_update = np.zeros_like(synapse_0)
    synapse_1_update = np.zeros_like(synapse_1)
    synapse_h_update = np.zeros_like(synapse_h)
    
    

    开始迭代:

    # training logic
    for j in range(10000):
    

    随机找a、b的值,要小于最大值的一半:

        # generate a simple addition problem (a + b = c)
        a_int = np.random.randint(largest_number/2) # int version
        a = int2binary[a_int] # binary encoding
    
        b_int = np.random.randint(largest_number/2) # int version
        b = int2binary[b_int] # binary encoding
    

    得出c并转换成二进制数:

        # true answer
        c_int = a_int + b_int
        c = int2binary[c_int]
    
        # where we'll store our best guess (binary encoded)
        d = np.zeros_like(c)
    
        overallError = 0
        
        layer_2_deltas = list()
        layer_1_values = list()
        # L1层迭代的值
        layer_1_values.append(np.zeros(hidden_dim))
        # 第一次迭代的时候先全部初始化为0
    

    前向传播遍历每一位运算:

        # moving along the positions in the binary encoding
        for position in range(binary_dim):
    
            # generate input and output
            X = np.array([[a[binary_dim - position - 1],b[binary_dim - position - 1]]])
            y = np.array([[c[binary_dim - position - 1]]]).T
    

    L1、L2层的值:

            # hidden layer (input ~+ prev_hidden)
            layer_1 = sigmoid(np.dot(X,synapse_0) + np.dot(layer_1_values[-1],synapse_h))
            
            # output layer (new binary representation)
            layer_2 = sigmoid(np.dot(layer_1,synapse_1))
    
            # did we miss?... if so, by how much?
            layer_2_error = y - layer_2
            # 得出预测值与真实值之间的差异
            layer_2_deltas.append((layer_2_error)*sigmoid_output_to_derivative(layer_2))
            overallError += np.abs(layer_2_error[0])
    

    在这里插入图片描述
    在这里插入图片描述
    实际的预测值:

            # decode estimate so we can print it out
            d[binary_dim - position - 1] = np.round(layer_2[0][0])
    

    因为L1层循环的原因,要保存其值:

            # store hidden layer so we can use it in the next timestep
            layer_1_values.append(copy.deepcopy(layer_1))
    

    反向传播遍历每一位运算:

        for position in range(binary_dim):
    
            X = np.array([[a[position],b[position]]])
            layer_1 = layer_1_values[-position-1]
            prev_layer_1 = layer_1_values[-position-2]
    

    更新权重:

            # error at output layer
            layer_2_delta = layer_2_deltas[-position-1]
            # error at hidden layer
            layer_1_delta = (future_layer_1_delta.dot(synapse_h.T) + layer_2_delta.dot(synapse_1.T)) * sigmoid_output_to_derivative(layer_1)
            
            # let's update all our weights so we can try again
            synapse_1_update += np.atleast_2d(layer_1).T.dot(layer_2_delta)
            synapse_h_update += np.atleast_2d(prev_layer_1).T.dot(layer_1_delta)
            synapse_0_update += X.T.dot(layer_1_delta)
            
            future_layer_1_delta = layer_1_delta
    

    在这里插入图片描述
    在这里插入图片描述
    参数更新:

        synapse_0 += synapse_0_update * alpha
        synapse_1 += synapse_1_update * alpha
        synapse_h += synapse_h_update * alpha    
    
        synapse_0_update *= 0
        synapse_1_update *= 0
        synapse_h_update *= 0
    

    打印结果:

        # print out progress
        if(j % 1000 == 0):
            print ("Error:" + str(overallError))
            print ("Pred:" + str(d))
            print ("True:" + str(c))
            out = 0
            for index,x in enumerate(reversed(d)):
                out += x*pow(2,index)
            print (str(a_int) + " + " + str(b_int) + " = " + str(out))
            print ("------------")
    

    运行结果

    Error:[3.45638663]
    Pred:[0 0 0 0 0 0 0 1]
    True:[0 1 0 0 0 1 0 1]
    9 + 60 = 1
    ------------
    Error:[3.63389116]
    Pred:[1 1 1 1 1 1 1 1]
    True:[0 0 1 1 1 1 1 1]
    28 + 35 = 255
    ------------
    Error:[3.91366595]
    Pred:[0 1 0 0 1 0 0 0]
    True:[1 0 1 0 0 0 0 0]
    116 + 44 = 72
    ------------
    Error:[3.72191702]
    Pred:[1 1 0 1 1 1 1 1]
    True:[0 1 0 0 1 1 0 1]
    4 + 73 = 223
    ------------
    Error:[3.5852713]
    Pred:[0 0 0 0 1 0 0 0]
    True:[0 1 0 1 0 0 1 0]
    71 + 11 = 8
    ------------
    Error:[2.53352328]
    Pred:[1 0 1 0 0 0 1 0]
    True:[1 1 0 0 0 0 1 0]
    81 + 113 = 162
    ------------
    Error:[0.57691441]
    Pred:[0 1 0 1 0 0 0 1]
    True:[0 1 0 1 0 0 0 1]
    81 + 0 = 81
    ------------
    Error:[1.42589952]
    Pred:[1 0 0 0 0 0 0 1]
    True:[1 0 0 0 0 0 0 1]
    4 + 125 = 129
    ------------
    Error:[0.47477457]
    Pred:[0 0 1 1 1 0 0 0]
    True:[0 0 1 1 1 0 0 0]
    39 + 17 = 56
    ------------
    Error:[0.21595037]
    Pred:[0 0 0 0 1 1 1 0]
    True:[0 0 0 0 1 1 1 0]
    11 + 3 = 14
    ------------
    
  • 相关阅读:
    Word中设置文档结构图
    jQuery设计思想
    JMJS系统总结系列JMJS中使用到的Jquery工具(四)
    JMJS系统总结系列XSLT的语句规则(一)
    构建安全的数据访问组件
    JMJS系统总结系列Jquery与后台的交互方式(三)
    浮躁的搬运工
    JMJS系统总结系列Jquery分页扩展库(五)
    IIS7 授权配置错误
    JMJS系统总结系列HTML标签在XSLT 中的应用(二)
  • 原文地址:https://www.cnblogs.com/AlexKing007/p/12339266.html
Copyright © 2011-2022 走看看