zoukankan      html  css  js  c++  java
  • Scrapy-redis之RFPDupeFilter、Queue、Scheduler

    scrapy-redis去重应用

     1 # -*- coding: utf-8 -*-
     2 import scrapy
     3 from scrapy.http import Request
     4 
     5 
     6 class ChoutiSpider(scrapy.Spider):
     7     name = 'chouti'
     8     allowed_domains = ['chouti.com']
     9     start_urls = ['http://www.chouti.com/']
    10 
    11     def start_requests(self):
    12         url = "http://dig.chouti.com/"
    13         yield Request(url=url, callback=self.parse)
    14 
    15     def parse(self, response):
    16         print('response', response)

    自定义中间件,过滤重复URL的爬虫,并且保存redis中

     1 #!/usr/bin/env python
     2 # -*- coding:utf-8 -*-
     3 
     4 import time
     5 from scrapy.dupefilters import BaseDupeFilter
     6 from scrapy.utils.request import request_fingerprint
     7 import redis
     8 from scrapy_redis.dupefilter import RFPDupeFilter
     9 from scrapy_redis.connection import get_redis_from_settings
    10 from scrapy_redis import defaults
    11 
    12 
    13 class DupeFilter(BaseDupeFilter):
    14     def __init__(self):
    15         self.conn = redis.Redis(host='192.168.1.13', port=3306, password='woshinidaye')
    16 
    17     def request_seen(self, request):
    18         fd = request_fingerprint(request)
    19         result = self.conn.sadd('visited_urls', fd)
    20         if result == 1:
    21             return False
    22         return True
    23 
    24 
    25 class RedisDupeFilter(RFPDupeFilter):
    26     """
    27     改下源码当中存入redis的key值,它源码里边是默认是存的时间戳作为key
    28     """
    29 
    30     @classmethod
    31     def from_settings(cls, settings):
    32         """Returns an instance from given settings.
    33 
    34         This uses by default the key ``dupefilter:<timestamp>``. When using the
    35         ``scrapy_redis.scheduler.Scheduler`` class, this method is not used as
    36         it needs to pass the spider name in the key.
    37 
    38         Parameters
    39         ----------
    40         settings : scrapy.settings.Settings
    41 
    42         Returns
    43         -------
    44         RFPDupeFilter
    45             A RFPDupeFilter instance.
    46 
    47 
    48         """
    49         server = get_redis_from_settings(settings)
    50         # XXX: This creates one-time key. needed to support to use this
    51         # class as standalone dupefilter with scrapy's default scheduler
    52         # if scrapy passes spider on open() method this wouldn't be needed
    53         # TODO: Use SCRAPY_JOB env as default and fallback to timestamp.
    54         # key = defaults.DUPEFILTER_KEY % {'timestamp': int(time.time())}  时间戳经常变不好取以后我直接定死
    55         key = defaults.DUPEFILTER_KEY % {'timestamp': 'woshinidie'}
    56         debug = settings.getbool('DUPEFILTER_DEBUG')
    57         return cls(server, key=key, debug=debug)

    配置文件

     1 # redis去重配置
     2 REDIS_HOST = '192.168.1.13'                           # 主机名
     3 REDIS_PORT = 3306                                     # 端口
     4 REDIS_PARAMS = {'password': 'woshinidaye'}            # Redis连接参数  默认:REDIS_PARAMS = {'socket_timeout': 30,'socket_connect_timeout': 30,'retry_on_timeout': True,'encoding': REDIS_ENCODING,})
     5 # REDIS_PARAMS['redis_cls'] = 'myproject.RedisClient' # 指定连接Redis的Python模块  默认:redis.StrictRedis
     6 REDIS_ENCODING = "utf-8"                              # redis编码类型  默认:'utf-8'
     7 
     8 # REDIS_URL = 'redis://user:pass@hostname:9001'       # 连接URL(优先于以上配置)源码可以看到
     9 DUPEFILTER_KEY = 'dupefilter:%(timestamp)s'
    10 # 纯源生的它内部默认是用的以时间戳作为key
    11 # DUPEFILTER_CLASS = 'scrapy_redis.dupefilter.RFPDupeFilter'
    12 # 我自定义在源码之上改了保存在redis中的key配置
    13 DUPEFILTER_CLASS = 'redisdepth.xxx.RedisDupeFilter'
    14 # 自定义redis去重配置
    15 # DUPEFILTER_CLASS = 'redisdepth.xxx.DupeFilter'

    Scrapy-redis的队列

      包括:先进先出队列,后进先出队列,优先队列

    1.先进先出队列

     1 #!/usr/bin/env python
     2 # -*- coding:utf-8 -*-
     3 
     4 import redis
     5 
     6 
     7 class FifoQueue(object):
     8     def __init__(self):
     9         self.server = redis.Redis(host='192.168.1.13', port=3306, password='woshinidaye')
    10 
    11     def push(self, request):
    12         """Push a request"""
    13         self.server.lpush('User', request)
    14 
    15     def pop(self):
    16         """Pop a request"""
    17         data = self.server.rpop('User')
    18         return data
    19 
    20 
    21 q = FifoQueue()
    22 q.push(11)
    23 q.push(22)
    24 q.push(33)
    25 print(q.pop())
    26 # 先进先出队列 

     2.后进先出队列

     1 #!/usr/bin/env python
     2 # -*- coding:utf-8 -*-
     3 
     4 import redis
     5 
     6 
     7 class LifoQueue(object):
     8 
     9     def __init__(self):
    10         self.server = redis.Redis(host='192.168.1.13', port=3306, password='woshinidaye')
    11 
    12     def push(self, request):
    13         """Push a request"""
    14         self.server.lpush('User', request)
    15 
    16     def pop(self, timeout=0):
    17         """Pop a request"""
    18         data = self.server.lpop('User')
    19         return data

    3.优先队列

     1 #!/usr/bin/env python
     2 # -*- coding:utf-8 -*-
     3 
     4 import redis
     5 
     6 
     7 class PriorityQueue(object):
     8     """Per-spider priority queue abstraction using redis' sorted set"""
     9 
    10     def __init__(self):
    11         self.server = redis.Redis(host='192.168.1.13', port=3306, password='woshinidaye')
    12 
    13     def push(self, request, score):
    14         """Push a request"""
    15         score = -request.priority
    16         # We don't use zadd method as the order of arguments change depending on
    17         # whether the class is Redis or StrictRedis, and the option of using
    18         # kwargs only accepts strings, not bytes.
    19         self.server.execute_command('ZADD', 'xxxx', score, request)
    20 
    21     def pop(self, timeout=0):
    22         """
    23         Pop a request
    24         timeout not support in this queue class
    25         """
    26         # use atomic range/remove using multi/exec
    27         pipe = self.server.pipeline()
    28         pipe.multi()
    29         pipe.zrange('xxxx', 0, 0).zremrangebyrank('xxxx', 0, 0)
    30         results, count = pipe.execute()
    31         if results:
    32             return results[0]
    33 
    34 
    35 q = PriorityQueue()
    36 
    37 q.push('ZH', -99)
    38 q.push('SB', -66)
    39 q.push('JJ', -33)
    40 # 如果优先级从小到大广度优先,从大到小就深度优先
    41 print(q.pop())  # 默认取最小的
    42 print(q.pop())
    43 print(q.pop())

    Scheduler源码分析(我在Notepad++写了直接贴过来的)

     1 1.找到from scrapy_redis.scheduler import Scheduler 
     2     -执行Scheduler.from_crawler
     3     -执行Scheduler.from_settings
     4         - 读取配置文件:
     5             SCHEDULER_PERSIST                # 是否在关闭时候保留原来的调度器和去重记录,True=保留,False=清空
     6             SCHEDULER_FLUSH_ON_START        # 是否在开始之前清空 调度器和去重记录,True=清空,False=不清空         
     7             SCHEDULER_IDLE_BEFORE_CLOSE        # 去调度器中获取数据时,如果为空,最多等待时间(最后没数据,未获取到)
     8         - 读取配置文件:
     9             SCHEDULER_QUEUE_KEY                # 调度器中请求存放在redis中的key
    10             SCHEDULER_QUEUE_CLASS            # 这里可以选择三种先进先出、后进先出、优先级,默认使用优先级队列(默认),其他:PriorityQueue(有序集合),FifoQueue(列表)、LifoQueue(列表)
    11             SCHEDULER_DUPEFILTER_KEY        # 去重规则,在redis中保存时对应的key
    12             DUPEFILTER_CLASS                # 这里有两种选择使用默认或者自己定义的
    13                 # 内置比如:DUPEFILTER_CLASS = 'scrapy_redis.dupefilter.RFPDupeFilter'
    14                 # 自定义的比如:DUPEFILTER_CLASS = 'redisdepth.xxx.DupeFilter'    这个优先级别高 在源码里边是先判断然后再后续操作    
    15             SCHEDULER_SERIALIZER            # 对保存到redis中的数据进行序列化,默认使用pickle
    16         - 读取配置文件:redis-server
    17             # 源码在connection.py中17行
    18             REDIS_HOST = '192.168.1.13'                           # 主机名
    19             REDIS_PORT = 3306                                     # 端口
    20             REDIS_PARAMS = {'password': 'woshinidaye'}            # Redis连接参数  默认:REDIS_PARAMS = {'socket_timeout': 30,'socket_connect_timeout': 30,'retry_on_timeout': True,'encoding': REDIS_ENCODING,})
    21             # REDIS_PARAMS['redis_cls'] = 'myproject.RedisClient' # 指定连接Redis的Python模块  默认:redis.StrictRedis
    22             REDIS_ENCODING = "utf-8"                              # redis编码类型  默认:'utf-8'
    23             # REDIS_URL = 'redis://user:pass@hostname:9001'       # 连接URL(优先于以上配置)源码可以看到
    24 2.爬虫开始执行起始URL
    25         - 调用Scheduler.enqueue_request
    26         def enqueue_request(self, request):
    27             # 请求需要过滤?并且 去重规则是否已经有?(是否已经访问,如果未访问添加到去重记录)request_seen去重规则重要的一个方法
    28             if not request.dont_filter and self.df.request_seen(request):
    29                 self.df.log(request, self.spider)
    30                 # 已经访问过不再进行访问
    31                 return False
    32             if self.stats:
    33                 self.stats.inc_value('scheduler/enqueued/redis', spider=self.spider)
    34             # 未访问过,添加到调度器中把这个请求
    35             self.queue.push(request)
    36             return True
    37 3.下载器去调度中获取任务,去执行任务下载
    38         - 调用Scheduler.next_request
    39         def next_request(self):
    40             block_pop_timeout = self.idle_before_close
    41             # 把任务取出来
    42             request = self.queue.pop(block_pop_timeout)
    43             if request and self.stats:
    44             # 此时下载
    45                 self.stats.inc_value('scheduler/dequeued/redis', spider=self.spider)
    46             return request
    47 
    48                 

    settings需要的配置

     1 # redis去重配置
     2 REDIS_HOST = '192.168.1.13'                           # 主机名
     3 REDIS_PORT = 3306                                     # 端口
     4 REDIS_PARAMS = {'password': 'woshinidaye'}            # Redis连接参数  默认:REDIS_PARAMS = {'socket_timeout': 30,'socket_connect_timeout': 30,'retry_on_timeout': True,'encoding': REDIS_ENCODING,})
     5 # REDIS_PARAMS['redis_cls'] = 'myproject.RedisClient' # 指定连接Redis的Python模块  默认:redis.StrictRedis
     6 REDIS_ENCODING = "utf-8"                              # redis编码类型  默认:'utf-8'
     7 
     8 # REDIS_URL = 'redis://user:pass@hostname:9001'       # 连接URL(优先于以上配置)源码可以看到
     9 DUPEFILTER_KEY = 'dupefilter:%(timestamp)s'
    10 # 纯源生的它内部默认是用的以时间戳作为key
    11 # DUPEFILTER_CLASS = 'scrapy_redis.dupefilter.RFPDupeFilter'
    12 # 我自定义在源码之上改了保存在redis中的key配置
    13 DUPEFILTER_CLASS = 'redisdepth.xxx.RedisDupeFilter'
    14 # 自定义redis去重配置
    15 # DUPEFILTER_CLASS = 'redisdepth.xxx.DupeFilter'
    16 
    17 
    18 # #############调度器配置###########################
    19 # from scrapy_redis.scheduler import Scheduler
    20 
    21 SCHEDULER = "scrapy_redis.scheduler.Scheduler"
    22 DEPTH_PRIORITY = 1  # 广度优先
    23 # DEPTH_PRIORITY = -1 # 深度优先
    24 SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.PriorityQueue'  # 默认使用优先级队列(默认),其他:PriorityQueue(有序集合),FifoQueue(列表)、LifoQueue(列表)
    25 # 广度优先
    26 # SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.FifoQueue'
    27 # 深度优先
    28 # SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.LifoQueue'
    29 
    30 SCHEDULER_QUEUE_KEY = '%(spider)s:requests'         # 调度器中请求存放在redis中的key
    31 SCHEDULER_SERIALIZER = "scrapy_redis.picklecompat"  # 对保存到redis中的数据进行序列化,默认使用pickle
    32 SCHEDULER_PERSIST = True                            # 是否在关闭时候保留原来的调度器和去重记录,True=保留,False=清空
    33 SCHEDULER_FLUSH_ON_START = True                     # 是否在开始之前清空 调度器和去重记录,True=清空,False=不清空
    34 SCHEDULER_IDLE_BEFORE_CLOSE = 10                    # 去调度器中获取数据时,如果为空,最多等待时间(最后没数据,未获取到)。
    35 SCHEDULER_DUPEFILTER_KEY = '%(spider)s:dupefilter'  # 去重规则,在redis中保存时对应的key
    36 SCHEDULER_DUPEFILTER_CLASS = 'scrapy_redis.dupefilter.RFPDupeFilter'    # 去重规则对应处理的类

    总结:

    深度优先:基于层级先进入到最深层级进行处理全部后再往上层级处理
    广度优先:基于从第一层开始,每个层次处理之后进入下一层级处理

    先进先出,广度优先 FifoQueue
    后进先出,深度优先 LifoQueue
    优先级队列:
    DEPTH_PRIORITY = 1 # 广度优先
    DEPTH_PRIORITY = -1 # 深度优先

    调度器 队列 DupeFilter三者关系
      调度器:获取哪个request
      队列: 存放request
      DupeFilter:对访问记录处理

     补充点点

    定义持久化,爬虫yield Item对象时执行RedisPipeline,默认是pickle
         
        a. 将item持久化到redis时,指定key和序列化函数
         
            REDIS_ITEMS_KEY = '%(spider)s:items'
            REDIS_ITEMS_SERIALIZER = 'json.dumps'
         
        b. 使用列表保存item数据  

     配置文件大解读

    # -*- coding: utf-8 -*-
    
    # Scrapy settings for redisdepth project
    #
    # For simplicity, this file contains only settings considered important or
    # commonly used. You can find more settings consulting the documentation:
    #
    #     https://docs.scrapy.org/en/latest/topics/settings.html
    #     https://docs.scrapy.org/en/latest/topics/downloader-middleware.html
    #     https://docs.scrapy.org/en/latest/topics/spider-middleware.html
    
    # 爬虫名称
    BOT_NAME = 'redisdepth'
    
    # 爬虫应用路径
    SPIDER_MODULES = ['redisdepth.spiders']
    NEWSPIDER_MODULE = 'redisdepth.spiders'
    
    
    # Crawl responsibly by identifying yourself (and your website) on the user-agent
    # 客服端user-agent请求头
    #USER_AGENT = 'redisdepth (+http://www.yourdomain.com)'
    USER_AGENT = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/74.0.3729.169 Safari/537.36'
    
    # 爬虫君子证书,禁止爬虫设置
    # Obey robots.txt rules
    # ROBOTSTXT_OBEY = True
    ROBOTSTXT_OBEY = False
    
    # Configure maximum concurrent requests performed by Scrapy (default: 16)
    # 并发请求数 力度要粗点
    #CONCURRENT_REQUESTS = 32
    
    # Configure a delay for requests for the same website (default: 0)
    # See https://docs.scrapy.org/en/latest/topics/settings.html#download-delay
    # See also autothrottle settings and docs
    # 延迟下载秒数
    #DOWNLOAD_DELAY = 3
    # The download delay setting will honor only one of:
    # 单域名访问并发数 并且延迟下次秒数也用在每个域名
    #CONCURRENT_REQUESTS_PER_DOMAIN = 16
    # 单IP访问并发数,如果有值则忽略:CONCURRENT_REQUESTS_PER_DOMAIN,并且延迟下次秒数也应用在每个IP
    #CONCURRENT_REQUESTS_PER_IP = 16
    
    # Disable cookies (enabled by default)
    # 是否支持cookie,cookiejar进行操作cookie
    #COOKIES_ENABLED = False
    
    # Disable Telnet Console (enabled by default)
    # Telnet用于查看当前爬虫的信息,操作爬虫等...
    #    使用telnet ip port ,然后通过命令操作
    # TELNETCONSOLE_ENABLED = True
    # TELNETCONSOLE_HOST = '127.0.0.1'
    # TELNETCONSOLE_PORT = [6023,]
    #TELNETCONSOLE_ENABLED = False
    
    # 默认请求头
    # Override the default request headers:
    #DEFAULT_REQUEST_HEADERS = {
    #   'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
    #   'Accept-Language': 'en',
    #}
    
    # 爬虫中间件
    # Enable or disable spider middlewares
    # See https://docs.scrapy.org/en/latest/topics/spider-middleware.html
    # SPIDER_MIDDLEWARES = {
    #    # 'redisdepth.middlewares.RedisdepthSpiderMiddleware': 543,
    #     'redisdepth.sd.Sd1': 666,
    #     'redisdepth.sd.Sd2': 667,
    #
    # }
    
    # 下载中间件
    # Enable or disable downloader middlewares
    # See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html
    # DOWNLOADER_MIDDLEWARES = {
    #    # 'redisdepth.middlewares.RedisdepthDownloaderMiddleware': 543,
    #    #  'redisdepth.md.Md1': 666,
    #    #  'redisdepth.md.Md2': 667
    # }
    
    # 自定义扩展,基于信号进行调用
    # Enable or disable extensions
    # See https://docs.scrapy.org/en/latest/topics/extensions.html
    EXTENSIONS = {
       # 'scrapy.extensions.telnet.TelnetConsole': None,
        'redisdepth.ext.MyExtension': 666,
    }
    
    # 定义pipeline处理请求
    # Configure item pipelines
    # See https://docs.scrapy.org/en/latest/topics/item-pipeline.html
    #ITEM_PIPELINES = {
    #    'redisdepth.pipelines.RedisdepthPipeline': 300,
    #}
    
    """
     自动限速算法
        from scrapy.contrib.throttle import AutoThrottle
        自动限速设置
        1. 获取最小延迟 DOWNLOAD_DELAY
        2. 获取最大延迟 AUTOTHROTTLE_MAX_DELAY
        3. 设置初始下载延迟 AUTOTHROTTLE_START_DELAY
        4. 当请求下载完成后,获取其"连接"时间 latency,即:请求连接到接受到响应头之间的时间
        5. 用于计算的... AUTOTHROTTLE_TARGET_CONCURRENCY
        target_delay = latency / self.target_concurrency
        new_delay = (slot.delay + target_delay) / 2.0 # 表示上一次的延迟时间
        new_delay = max(target_delay, new_delay)
        new_delay = min(max(self.mindelay, new_delay), self.maxdelay)
        slot.delay = new_delay
    """
    # Enable and configure the AutoThrottle extension (disabled by default)
    # See https://docs.scrapy.org/en/latest/topics/autothrottle.html
    # 开始自动限速
    #AUTOTHROTTLE_ENABLED = True
    # The initial download delay
    # 初始下载延迟
    #AUTOTHROTTLE_START_DELAY = 5
    # The maximum download delay to be set in case of high latencies
    # 最大下载延迟
    #AUTOTHROTTLE_MAX_DELAY = 60
    # The average number of requests Scrapy should be sending in parallel to
    # each remote server
    # 平均每秒并发数
    #AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0
    # Enable showing throttling stats for every response received:
    # 是否显示
    #AUTOTHROTTLE_DEBUG = False
    
    # Enable and configure HTTP caching (disabled by default)
    # See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings
    """
    启用缓存
        目的用于将已经发送的请求或相应缓存下来,以便以后使用
        
        from scrapy.downloadermiddlewares.httpcache import HttpCacheMiddleware
        from scrapy.extensions.httpcache import DummyPolicy
        from scrapy.extensions.httpcache import FilesystemCacheStorage
    """
    # 是否启用缓存策略
    #HTTPCACHE_ENABLED = True
    # 缓存策略:所有请求均缓存,下次在请求直接访问原来的缓存即可
    # HTTPCACHE_POLICY = "scrapy.extensions.httpcache.DummyPolicy"
    # 缓存策略:根据Http响应头:Cache-Control、Last-Modified 等进行缓存的策略
    # HTTPCACHE_POLICY = "scrapy.extensions.httpcache.RFC2616Policy"
    # 缓存超时时间
    #HTTPCACHE_EXPIRATION_SECS = 0
    # 缓存保存路径
    #HTTPCACHE_DIR = 'httpcache'
    # 缓存忽略的http状态码
    #HTTPCACHE_IGNORE_HTTP_CODES = []
    # 缓存存储的插件
    #HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'
  • 相关阅读:
    CALL FUNCTION 'BAPI_GOODSMVT_CREATE'-(物料凭证创建)
    SAP邮件
    sap人员编制
    ABAP 日期栏函数
    SAP建数据库索引
    去前导零
    SD相关的表
    php 使用 file_exists 还是 is_file
    FastAdmin 的 CRUD 不支持层级模型
    使用 Visual Studio Code (VSCODE)写 C51 (持续更新 2018-04-09)
  • 原文地址:https://www.cnblogs.com/Alexephor/p/11446167.html
Copyright © 2011-2022 走看看