zoukankan      html  css  js  c++  java
  • CF1016F 【Road Projects】

    思路

    可以考虑另一种想法:因为我们发现,答案是肯定不会大于在原来的树上的最短路径的。所以原来的最短路是(有可能的)最大值!

    我们把树变成这样,提取出1~n的路径,方便观看撕烤:

    (它有个我起的名字,叫灯笼树态,处理树上路径与其余部分之间的关系时画图用,并非真实的数据结构)

    我们称被提取出来的树上路径(本题为1~n)为灯笼线,路径上每一个节点及其下悬挂的子树称为灯笼子树,每一个灯笼子树的根节点叫悬挂点

    显然,悬挂点一定在灯笼线上。任意一个点的悬挂点就是它所在的灯笼子树的悬挂点。一个点如果在灯笼线上,那么它的悬挂点是自己。

    那么什么时候原来的最短路不是答案呢?

    那么就是对于任何的u和v,将它们连接起来后,新的最短路都比原来的最短路小。

    换句话说:设灯笼线上的两个点x和y分别为准备新加边的u,v的悬挂点。那么只需比较(x到y的路径长度)和(ux,vy的长度和再加上每次询问时的那个值)即可。

    (重头戏来了!)

    如果上文的u和v再同一颗灯笼子树内呢?

    (*)于是,你发现一个结论:如果一颗灯笼子树除悬挂点外有超过两个以上的节点,那么连接这颗灯笼子树内的两个没有直接边相连的点,无论询问多少,Ans会取到原图的最短路,也就是理论最大值。

    所以,我们仅需考虑每颗颗灯笼子树除悬挂点外仅有1的点的原树即可。

    由于要比较(x到y的路径长度)和(ux,vy的长度和再加上每次询问时的那个值),所以我们可以算出最大的(x到y的路径长度)-(ux,vy的长度和),每次询问将其加上询问值并与0比较即可。

    如何算出(x到y的路径长度)-(ux,vy的长度和)?将这个式子拆开分别维护,一遍dfs,用heap维护一下。建议读者自行撕烤这部分内容。

    Code:

    #include <cstdio>
    #include <queue>
    using namespace std;
    const int S=600006;
    struct info
    {
    	int x;
    	long long s;
    	inline bool operator<(const info &a) const
    	{
    		return s<a.s;
    	}
    }st[S];
    priority_queue<info> pq;
    int n,m,h[S],nx[S],v[S],w[S],eg=1,s[S],fa[S],top,lc[S],rc[S];
    const long long infl=(1ll<<60)-1;
    long long dep[S],res=-infl;
    bool flag,mk[S];
    void read(int &s)
    {
    	s=0;char c=getchar();
    	while (c<'0' || c>'9') c=getchar();
    	while (c>='0' && c<='9') s=(s<<1)+(s<<3)+(c^48),c=getchar();
    }
    inline void egadd(int uu,int vv,int ww)
    {
    	nx[++eg]=h[uu];h[uu]=eg;
    	v[eg]=vv;w[eg]=ww;
    }
    void dfs_1(int x)
    {
    	s[x]=1;
    	for (int i=h[x];i;i=nx[i])
    		if (v[i]!=fa[x])
    		{
    			fa[v[i]]=x;
    			dep[v[i]]=dep[x]+w[i];
    			dfs_1(v[i]);
    			s[x]+=s[v[i]];
    		}
    }
    bool check()
    {
    	int o=n;
    	if (s[o]>2) return false;
    	while (o!=1)
    	{
    		if (s[fa[o]]-s[o]>2) return false;
    		mk[o]=true;
    		o=fa[o];
    	}
    	mk[1]=true;
    	return true;
    }
    inline long long ma(long long a,long long b){return a>b?a:b;}
    inline long long mi(long long a,long long b){return a<b?a:b;}
    void dfs_3(int x)//这里是将原树转为二叉树,因为灯笼子树大小不超过两个点的树就是一颗二叉树
    {
    	for (int i=h[x];i;i=nx[i])
    		if (v[i]!=fa[x])
    		{
    			dfs_3(v[i]);
    			if (mk[v[i]])
    			{
    				lc[x]=v[i];
    				break;
    			}
    		}
    	for (int i=h[x];i;i=nx[i])
    		if (v[i]!=fa[x])
    			if (!mk[v[i]])
    			{
    				rc[x]=v[i];
    				break;
    			}
    }
    void dfs_2(int x)
    {
    	if (lc[x]) dfs_2(lc[x]);
    	if (rc[x]) dfs_2(rc[x]);
    	while (!pq.empty() && fa[pq.top().x]==x)
    		st[++top]=pq.top(),pq.pop();
    	if (!pq.empty()) res=ma(res,pq.top().s+dep[x]);
    	while (top) pq.push(st[top--]);
    	pq.push((info){x,2*(mk[x]?0:dep[x]-dep[fa[x]])-dep[x]});
    }
    int main()
    {
    	read(n);read(m);
    	for (int i=1;i<n;i++)
    	{
    		int uu,vv,ww;
    		read(uu);read(vv);read(ww);
    		egadd(uu,vv,ww);
    		egadd(vv,uu,ww);
    	}
    	dfs_1(1);
    	flag=check();
    	if (flag) dfs_3(1),dfs_2(1);
    	int x;
    	while (m--)
    	{
    		read(x);
    		if (flag) printf("%lld
    ",dep[n]+mi(0,res+x));
    		else printf("%lld
    ",dep[n]);
    	}
    	return 0;
    }
    
    
  • 相关阅读:
    K2 BPM_携手东航物流,领跑全球航空物流业_全球领先的工作流引擎
    K2 BPM_如何将RPA的价值最大化?_全球领先的工作流引擎
    Sqlserver 增删该查----查
    U3D Resources AssetBundle资源打包
    Sqlserver 触发器
    Sqlserver 游标
    U3D 协程和www
    U3D 数据在安卓设备上的存储,加载
    U3D SQLite数据库
    U3D 装备的添加和移除(Unity3D)
  • 原文地址:https://www.cnblogs.com/Algebra-hy/p/11711757.html
Copyright © 2011-2022 走看看