zoukankan      html  css  js  c++  java
  • HDU1402 HDU4609 FFT快速DFT

    原理具体内容可见算法导论第30章,很详细,部分线性代数知识

    简单陈述:多项式可表示成点值表达式。次数界为n的多项式可以由n个点对唯一表示,证明可由矩阵行列式不为0,矩阵可逆证明。

    设次数界为n的多项式A(x) = {(x0, y0), (x1,y1), ……,(xn-1, yn-1)},则另xi为x^n=1的n个复根w,则求出来的n维向量y成为多项式系数向量a的DFT变换。

    FFT使用分治方法来快速计算DFT

    HDU1402

    #include <iostream>
    #include <stdio.h>
    #include <stdlib.h>
    #include <math.h>
    #include <string.h>
    using namespace std;
    const double PI = acos(-1.0);
    struct Complex
    {
        double real, img;
        Complex(){real = img = 0;}
        Complex(double a, double b) : real(a), img(b) {}
        Complex operator+(const Complex a)
        {
            return Complex(real+a.real, img+a.img);
        }
        Complex operator-(const Complex a)
        {
            return Complex(real-a.real, img-a.img);
        }
        Complex operator*(const Complex a)
        {
            return Complex(real*a.real-img*a.img, real*a.img+img*a.real);
        }
    };
    
    int bit_revserve(int id, int len)
    {
        int ans = 0, p;
        for(int i = 0; (1<<i) < len; i++)
        {
            ans <<= 1;
            if(id&(1<<i)) ans |= 1;
        }
        return ans;
    }
    
    Complex A[140000];
    void FFT(Complex *a, int len, int DFT)
    {
        for(int i = 0; i < len; i++)
            A[bit_revserve(i, len)] = a[i];
        for(int s = 1; (1<<s) <= len; s++)
        {
            int m = 1<<s;
            Complex wm(cos(DFT*2*PI/m), sin(DFT*2*PI/m));
    
            for(int k = 0; k < len; k += m)
            {
                Complex w(1,0);
                for(int j = 0; j < (m/2); j++)
                {
                    Complex u = A[k+j];
                    Complex t = A[k+j+m/2]*w;
                    A[k+j] = u+t;
                    A[k+j+m/2] = u-t;
                    w = w*wm;
                }
            }
        }
        if(DFT == -1)
            for(int i = 0; i < len; i++)
                A[i].real /= len, A[i].img /= len;
        for(int i = 0; i < len; i++)
            a[i] = A[i];
    }
    
    char s[50050],ss[50050];
    Complex a[140050];
    Complex b[140050];
    Complex c[140050];
    int ans[140050];
    int main()
    {
        while(scanf("%s", s) != EOF)
        {
            memset(a, 0, sizeof(a));
            memset(b, 0, sizeof(b));
            int lena = strlen(s);
            int k = 0;
            scanf("%s", ss);
            int lenb = strlen(ss);
            while((1<<k) < lena) k++;
            while((1<<k) < lenb) k++;
            int len = 1 << (k+1);
    
            for(int i = 0; i < len; i++)
            {
                if(i < lena) a[i] = Complex(s[lena - i - 1] - '0', 0);
                else a[i] = Complex(0, 0);
                if(i < lenb) b[i] = Complex(ss[lenb - i - 1] - '0', 0);
                else b[i] = Complex(0, 0);
            }
    
            FFT(a, len, 1);
            FFT(b, len, 1);
            for(int i = 0; i < len; i++)
                c[i] = a[i]*b[i];
            FFT(c, len, -1);
            memset(ans, 0, sizeof(ans));
            for(int i = 0; i < len; i++)
            {
                ans[i] = int(c[i].real+0.5);
            }
            for(int i = 0; i < len; i++)
            {
                ans[i+1] += ans[i]/10;
                ans[i] %= 10;
            }
            int flag = 0;
            for(int i = len; i >= 0; i--)
            {
                if(ans[i]) printf("%d",ans[i]),flag = 1;
                else if(flag||i==0) printf("0");
            }
            puts("");
        }
    }

     

     

    HDU4609,上题比较裸,这题要多加思考,找到可以组成三角形的三个树枝的数量。进行一次FFT,也就是多项式相乘,那么对应x^n的系数就是用两个树枝的总长度为n的组合种数,这里的两个树枝是可以重复的,而且<a,b><b,a>这样选两个树枝是算两个,所以要去重,剪掉两个相同的树枝组成的n,然后除以二,保证无序性。然后按三角形最长的边枚举,两两之和大于当前枚举的边,剪掉两个都比它长的,一个比他长的,一个比他短的,一个就是它的三种情况就好了。

    #include <iostream>
    #include <stdio.h>
    #include <string.h>
    #include <stdlib.h>
    #include <math.h>
    #include <algorithm>
    using namespace std;
    const int MAXN = 1e5*3+50;
    const double PI = acos(-1.0);
    typedef long long LL;
    struct Complex
    {
        double real,image;
        Complex(){real = image = 0;}
        Complex(double a, double b):real(a), image(b) {}
        Complex operator+(Complex a){ return Complex(real+a.real, image+a.image);}
        Complex operator-(Complex a){ return Complex(real-a.real, image-a.image);}
        Complex operator*(Complex a){ return Complex(real*a.real-image*a.image, real*a.image+a.real*image);}
    };
    
    int rev(int id, int len)
    {
        int ret = 0;
        for(int i = 0; (1<<i) < len; i++)
        {
            ret <<= 1;
            if(id&(1<<i)) ret |= 1;
        }
        return ret;
    }
    
    Complex A[MAXN];
    
    void FFT(Complex a[], int len, int DFT)
    {
        for(int i = 0; i < len; i++)
            A[rev(i,len)] = a[i];
        for(int s = 1; (1<<s) <= len; s++)
        {
            int m = 1<<s;
            Complex wm(cos(PI*2*DFT/m), sin(PI*2*DFT/m));
            for(int k = 0; k < len; k += m)
            {
                Complex w(1,0);
                for(int j = 0; j < m/2; j++)
                {
                    Complex u = A[k+j];
                    Complex t = A[k+j+m/2]*w;
                    A[k+j] = u+t;
                    A[k+j+m/2] = u-t;
                    w = w*wm;
                }
            }
        }
        if(DFT == -1)
            for(int i = 0; i < len; i++)
                A[i].real /= len, A[i].image /= len;
        for(int i= 0; i < len; i++)
            a[i] = A[i];
    }
    const int N =300000 + 50;
    int T;
    Complex C[N];
    int a[N];
    LL ans[N];
    int num[N];
    LL sum[N];
    int main()
    {
        scanf("%d", &T);
        while(T--)
        {
            int n,maxv = -1;
            scanf("%d", &n);
            memset(num, 0, sizeof(num));
            for(int i = 0; i < n; i++)
            {
                scanf("%d", &a[i]);
                num[a[i]]++;
                maxv = max(a[i], maxv);
            }
    
            int len = 0;
            while((1<<len) <= maxv) len++;
            len = 1<<(len+1);
    
            for(int i = 0; i < len; i++)
            {
                C[i] = Complex(num[i], 0);
            }
            FFT(C, len, 1);
    
            for(int i = 0; i < len; i++)
                C[i] = C[i]*C[i];
    
            FFT(C, len, -1);
    
    
    
            for(int i = 0; i <= 2*maxv; i++)
                ans[i] = (LL)(C[i].real+0.5);
            /*for(int i = 0; i <= 2*maxv; i++)
                printf("%d  ", ans[i]);*/
            for(int i = 0; i < n; i++)
                ans[a[i]+a[i]]--;
            for(int i = 0; i <= 2*maxv; i++)
                ans[i] /= 2;
            sum[0] = 0;
            for(int i = 1; i <= 2*maxv; i++)
                sum[i] = sum[i-1] + ans[i];
    
            sort(a, a + n);
            LL ret = 0LL;
            for(int i = 1; i <= n; i++)
            {
                LL tmp = sum[2*maxv] - sum[a[i-1]];
                //printf("ret = %lld
    ", ret);
                tmp -= (LL)(n-i)*(i-1);
                tmp -= (LL)(n-i)*(n-i-1)/2;
                tmp -= (LL)(n-1);
    
                ret += tmp;
            }
            //cout<<ret<<endl;
            printf("%.7f
    ", 1.0*ret*6/n/(n-1)/(n-2));
    
        }
        return 0;
    }
    如果有错误,请指出,谢谢
  • 相关阅读:
    Pyhon基础过滤字符串中的字母数字特殊符号
    [编程题] 斐波那契数列
    左旋转字符串(Java)-循环Index方式
    [编程题]字符流中第一个不重复的字符
    6525. 【2020.4.1模拟】Valleys
    6515. 【GDOI2020模拟03.28】数一数(one)
    6516. 【GDOI2020模拟03.28】数二数(two)
    6508. 【GDOI2020模拟03.11】我的朋友们
    6494. 【GDOI2020模拟03.08】勘探
    6491. 【GDOI2020模拟03.04】铺路
  • 原文地址:https://www.cnblogs.com/Alruddy/p/7266804.html
Copyright © 2011-2022 走看看