zoukankan      html  css  js  c++  java
  • POJ 3233 Matrix Power Series(矩阵快速幂+二分求和)

    Description

    Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak.

    Input

    The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 109) and m (m < 104). Then follow n lines each containing n nonnegative integers below 32,768, giving A’s elements in row-major order.

    Output

    Output the elements of S modulo m in the same way as A is given.

    Sample Input

    2 2 4
    0 1
    1 1

    Sample Output

    1 2
    2 3

    题意:给定一个n*n的矩阵,求矩阵k阶阶乘,即求A^1+A^2+......+A^k的和
    思路:因为k的范围是1到10^9,所以不能暴力去做,于是应该想到比较快的时间复杂度:二分。在快速幂的基础上,通过二分来求和

    具体代码如下:


      1 #include <iostream>
      2 #include <cstdio>
      3 #include <cstring>
      4 #include <cstdlib>
      5 #include <cmath>
      6 #include <algorithm>
      7 using namespace std;
      8 
      9 const int m=33;
     10 
     11 struct node
     12 {
     13     int matrix[m][m];
     14     node(){}
     15     friend node operator * (node a,node b);
     16     friend node operator + (node a,node b);
     17 };
     18 
     19 int mod;
     20 int n;
     21 
     22 void init(node &a)
     23 {
     24     for(int i=0;i<n;i++)
     25     {
     26         for(int j=0;j<n;j++)
     27             a.matrix[i][j]=0;
     28     }
     29 
     30 }
     31 
     32 node operator * (node a,node b)
     33 {
     34     node c;
     35     init(c);
     36     for(int k=0;k<n;k++)
     37     {
     38         for(int i=0;i<n;i++)
     39         {
     40             for(int j=0;j<n;j++)
     41             {
     42                 c.matrix[i][j]=(c.matrix[i][j]+a.matrix[i][k]*b.matrix[k][j])%mod;
     43             }
     44         }
     45     }
     46     return c;
     47 }
     48 
     49 node operator + (node a,node b)
     50 {
     51     node tmp;
     52     init(tmp);
     53     for(int i=0;i<n;i++)
     54     {
     55         for(int j=0;j<n;j++)
     56             tmp.matrix[i][j]=(a.matrix[i][j]+b.matrix[i][j])%mod;
     57     }
     58     return tmp;
     59 }
     60 
     61 node fast_pow(node a,long long k)
     62 {
     63     node b;
     64     for(int i=0;i<n;i++)
     65     {
     66         for(int j=0;j<n;j++)
     67         {
     68             if(i==j) b.matrix[i][j]=1;
     69             else b.matrix[i][j]=0;
     70         }
     71     }
     72     while(k)
     73     {
     74         if(k&1) b=a*b;
     75         a=a*a;
     76         k>>=1;
     77     }
     78     return b;
     79 }
     80 
     81 node sum(node a,long long k)    //二分求和
     82 {
     83     node tmp1,tmp2;
     84     if(k==1) return a;
     85     tmp1=sum(a,k/2);      //递归
     86     if(k&1)
     87     {
     88         tmp2=fast_pow(a,k/2+1);
     89         tmp1=tmp2*tmp1+tmp1;
     90         return tmp1+tmp2;
     91     }
     92     else
     93     {
     94         tmp2=fast_pow(a,k/2);
     95         return tmp2*tmp1+tmp1;
     96     }
     97 }
     98 
     99 int main()
    100 {
    101     long long k;
    102     while(~scanf("%d%I64d%d",&n,&k,&mod))
    103     {
    104         node a;
    105         for(int i=0;i<n;i++)
    106         {
    107             for(int j=0;j<n;j++)
    108             {
    109                 scanf("%d",&a.matrix[i][j]);
    110                 a.matrix[i][j]%= mod;
    111             }
    112         }
    113         node b=sum(a,k);
    114         for(int i=0;i<n;i++)
    115         {
    116             for(int j=0;j<n;j++)
    117             {
    118                 printf("%d%c",b.matrix[i][j],j==n-1?'
    ':' ');
    119             }
    120         }
    121     }
    122     return 0;
    123 }
  • 相关阅读:
    Linux下暴力破解工具Hydra详解
    LeetCode OJ--Evaluate Reverse Polish Notation
    LeetCode OJ--Valid Parentheses
    LeetCode OJ--Implement strStr()
    LeetCode OJ--Valid Palindrome
    LeetCode OJ--Remove Duplicates from Sorted List II *
    LeetCode OJ--Partition List
    LeetCode OJ--Reverse Linked List II
    LeetCode OJ--3Sum **
    LeetCode OJ--Search in Rotated Sorted Array II
  • 原文地址:https://www.cnblogs.com/Amidgece/p/5762203.html
Copyright © 2011-2022 走看看