Description
问 ([a,b]) 中有多少个不含 (37) 和 (4) 的数字。
(1 leq a, space b leq 2 imes 10^9)
Solution
很明显的一道数位 (mathrm{dp}) 啊。但是我太菜了,并不会数位 (mathrm{dp})。
再仔细一看:数位 (mathrm{dp}) 的数据范围咋开这么小啊,是不是想让打表水过啊。于是我们有了一个新的思路:打表。
可以采用分块的思想,以 (10^7) 为一段,把每一段符合条件的数字个数都计算出来。这样一共有 (200) 段。制表代码如下:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 2e9, unit = 5000000;
int L, R, x, ans, p[23333];
int solve(int l, int r)
{
p[0] = 0, ans = 0;
for(int i = l; i <= r; i++)
{
int x = i, len = 0, fl = 1;
while(x != 0) { p[++len] = x % 10; x /= 10; }
for(int j = 1; j <= len; j++)
if(p[j] == 4 || p[j] == 3 && p[j - 1] == 7)
fl = 0;
ans += fl;
}
return ans;
}
int main()
{
freopen("dabiao.out", "w", stdout);
for(int i = 1; i <= 400; i++)
{
L = unit * (i - 1) + 1, R = unit * i;
printf("%d, ", solve(L, R));
}
return 0;
}
大概一两分钟就能跑出来。
剩下的跟分块一样。扫描打出来的每一段,如果被 ([a,b]) 区间包含就直接统计答案。区间多余的两边暴力统计。时间复杂度大概是 (mathrm{O(200 + 2 imes 8 imes 10^7)}),极限数据在本地跑大概 (1.1s),可以通过。
Code
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int unit = 1e7;
int biao[233] = {0, 4435929, 4435929, 4435929, 3936807, 1, 4435929, 4435929, 4435929, 4435929, 4435929, 4435929, 4435929, 4435929, 3936807, 1, 4435929, 4435929, 4435929, 4435929, 4435929, 4435929, 4435929, 4435929, 3936807, 1, 4435929, 4435929, 4435929, 4435929, 4435929, 4435929, 4435929, 4435929, 3936807, 1, 4435929, 4435928, 1, 4435929, 4435928, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4435929, 4435929, 4435929, 3936807, 1, 4435929, 4435929, 4435929, 4435929, 4435929, 4435929, 4435929, 4435929, 3936807, 1, 4435929, 4435929, 4435929, 4435929, 4435929, 4435929, 4435929, 4435929, 3936807, 1, 4435929, 4435929, 4435929, 4435929, 4435929, 4435929, 4435929, 4435929, 3936807, 1, 4435929, 4435929, 4435929, 4435929, 4435929, 4435929, 4435929, 4435929, 3936807, 1, 4435929, 4435929, 4435929, 4435929, 4435929, 4435929, 4435929, 4435929, 3936807, 1, 4435929, 4435929, 4435929, 4435929, 4435929, 4435929, 4435929, 4435929, 3936807, 1, 4435929, 4435929, 4435929, 4435929, 4435929, 4435929, 4435929, 4435929, 3936807, 1, 4435929, 4435929, 4435929, 4435929, 4435929, 4435929, 4435929, 4435929, 3936807, 1, 4435929, 4435928, 1, 4435929, 4435928, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4435929, 4435929, 4435929, 3936807, 1, 4435929, 4435929, 4435929, 4435929, 4435929, 4435929, 4435929, 4435929, 3936807, 1, 4435929, 4435929, 4435929, 4435929, 4435929, 4435929, 4435929, 4435929, 3936807, 1, 4435929, 4435929, 4435929, 4435929, 4435929, 4435929, 4435929, 4435929, 3936807, 1, 4435929, 4435929, 4435929, 4435929, 4435929, 4435929, 4435929, 4435929, 3936807, 1, 4435929, 4435929, 4435929, 4435929, 4435929};
int a, b, L, R, res, flg = 0, p[2333], lx = 0x3f3f3f3f, rx = 0, ans = 0;
inline int solve(int l, int r)
{
p[0] = 0, res = 0;
for(int i = l; i <= r; i++)
{
int x = i, len = 0, fl = 1;
while(x != 0) { p[++len] = x % 10; x /= 10; }
for(int j = 1; j <= len; j++)
if(p[j] == 4 || p[j] == 3 && p[j - 1] == 7)
fl = 0;
res += fl;
}
return res;
}
int main()
{
scanf("%d%d", &a, &b);
for(int i = 1; i <= 200; i++)
{
L = unit * (i - 1) + 1, R = unit * i;
if(a <= L && b >= R)
{
flg = 1;
lx = min(lx, L);
rx = max(rx, R);
ans += biao[i];
}
if(L > b) break;
}
if(flg && lx > a) ans += solve(a, lx - 1);
if(flg && rx < b) ans += solve(rx + 1, b);
if(!flg) ans = solve(a, b);
printf("%d", ans);
return 0;
}