zoukankan      html  css  js  c++  java
  • KNN算法

    KNN算法的核心思想:如果一个样本在特征空间中的k个最邻近的样本大多数属于某一类别,则该样本也属于该类别

    KNN算法的结果很大程度上取决于K的取值,下面进行说明:

    如果k=5 则上图中的红点属于三角形所属类,因为三角形所属类占3/5,而四边形类只占了2/5,如果k=11,则红点属于四边形类,四边形类占8/11,而三角形类占3/11

    KNN中,样本的距离一般采用欧式距离或曼哈顿距离

    欧式距离d(x,y)=sqrt(∑k=1 t0 n(xk-yk)2)

    曼哈顿距离d(x,y)=sqrt(∑k=1 to nabs(xk-yk))

    KNN算法的描绘:

    (1) 计算测试数据与训练数据之间的距离

    (2)将距离从小到大排序

    (3)选取前K个样本

    (4)确定K个样本所属类的频率

    (5)将测试数据所属类标记为上述频率最高的类别

  • 相关阅读:
    前端UI框架
    Knowledge
    Microsoft SQL Server
    ASP.NET MVC
    将博客搬至CSDN
    python中的数据类型
    python基础知识
    接口和抽象类的区别
    面向对象的四大特征
    数据结构学习笔记
  • 原文地址:https://www.cnblogs.com/semen/p/6808394.html
Copyright © 2011-2022 走看看