zoukankan      html  css  js  c++  java
  • Poj 2533 Longest Ordered Subsequence(LIS)

    一、Description

    A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence (a1, a2, ..., aN) be any sequence (ai1, ai2, ..., aiK), where 1 <= i1 < i2 < ... < iK <= N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).

    Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.

    Input

    The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000

    Output

    Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.
    二、题解
           这题和3903、1887一样属于LIS问题,在之前有关于LIS的分析 最长递增子序列(LIS)。这里实现了LCS+快速排序的方法。比较耗时、耗内存,但对于单个Case还是可以保证运行的。
    三、java代码
    import java.util.*;   
    
    public class Main {
    	static  int n;
    	static int[] a;
    	static int[] b;
    	public static void QuickSort(int[] a){
    		QSort(a,1,n);
    	}
    	public static void QSort(int[] a,int p,int r){
    		if(p<r)
    		{
    			int q=Partition(a,p,r);
    			QSort(a,p,q-1);
    			QSort(a,q+1,r);
    		}
    	}
    	
    	public static int  Partition(int[] a,int p,int r){
    		int x=a[r];
    		int i=p-1;
    		for(int j=p;j<r;j++)
    		{
    			if(a[j]<=x){
    				i=i+1;
    				swap(a, i, j);
    			}
    		}
    		swap(a, i+1, r);
    		return i+1;
    	}
    	public static void swap(int[] a, int i,int j){
        	int temp;
        	temp=a[j];
        	a[j]=a[i];
        	a[i]=temp;
        }
    	public static int LCS(int a[],int[] b){    
            int  [][] z=new int [n+1][n+1];    
            int i,j;    
            for( i=0;i<=n;i++)    
                z[i][0]=0;    
            for( j=0;j<=n;j++)    
                z[0][j]=0;    
                
            for(i=1;i<=n;i++){    
                for( j=1;j<=n;j++){    
                    if(a[i]==b[j]){    
                        z[i][j]= z[i-1][j-1]+1;    
                    }    
                    else    
                        z[i][j]=z[i-1][j] > z[i][j-1] ?z[i-1][j]:z[i][j-1];    
                }    
            }    
            return z[n][n];    
        }    
        public static void main(String[] args) {   
            Scanner cin = new Scanner(System.in);
            while(cin.hasNext()){
    	        n=cin.nextInt();
    	        a=new int[n+1];
    	        b=new int[n+1];
    	        int i,j;
    	        for(i=1;i<=n;i++){
    	        	a[i]=cin.nextInt();
    	        	b[i]=a[i];
    	        }
    	        QuickSort(a);
    	        for(i=1;i<n;i++){
    	        	for(j=i+1;j<=n;j++){
    		        	if(a[i]!=-1 && a[i]==a[j])
    		        		a[j]=-1;
    	        	}
    	        }
    	        System.out.println(LCS(a,b));
            }
        }   
    } 


    版权声明:本文为博主原创文章,未经博主允许不得转载。

  • 相关阅读:
    转 方法多态与Duck typing;C#之拙劣与F#之优雅
    Steve Jobs explains objectoriented programming
    c# 之 dynamic关键字
    Eric Schmidt 之关于 Steve Jobs
    面向过程vs面向对象
    转 命令,不要去询问(Tell, Don’t Ask)
    转 函数式编程的10年演化:越来越纯
    网络流学习笔记——简单题
    网络流学习笔记——难题
    线性代数学习笔记
  • 原文地址:https://www.cnblogs.com/AndyDai/p/4734142.html
Copyright © 2011-2022 走看看