Problem Description
This is Kolakosiki sequence: 1,2,2,1,1,2,1,2,2,1,2,2,1,1,2,1,1,2,2,1……. This sequence consists of 1 and 2, and its first term equals 1. Besides, if you see adjacent and equal terms as one group, you will get 1,22,11,2,1,22,1,22,11,2,11,22,1……. Count number of terms in every group, you will get the sequence itself. Now, the sequence can be uniquely determined. Please tell HazelFan its nth element.
Input
The first line contains a positive integer T(1≤T≤5), denoting the number of test cases.
For each test case:
A single line contains a positive integer n(1≤n≤107).
For each test case:
A single line contains a positive integer n(1≤n≤107).
Output
For each test case:
A single line contains a nonnegative integer, denoting the answer.
A single line contains a nonnegative integer, denoting the answer.
Sample Input
2
1
2
Sample Output
1
2
题意:
1,2,2,1,1,2,1,2,2,1,2,2,1,1,2,1,1,2,2,1,2,1,1,2,1,2,2,1,1,…
它的定义很简单,若把数列中相同的数定为一组,令a(1)=1,a(2)=2,则a(n)等于第n组数的长度。
可以根据这个定义来推算第三项以后的数:例如由于a(2)=2,因此第2组数的长度是2,因此a(3)=2,;
由于a(3)=2,所以第三组数的长度是2,因此a(4)=a(5)=1;由于a(4)=1,a(5)=1,所以第四组数和第五组数的长度都为1,因此a(6)=2,a(7)=1,以此类推。
给出n求第n项的数字是多少
题解:
直接预处理根据性质算出序列
1 #include<iostream> 2 #include<cstdio> 3 #include<cstring> 4 #include<queue> 5 #include<algorithm> 6 #include<cmath> 7 using namespace std; 8 const int maxn=1e7+5; 9 int a[maxn]; 10 int b[maxn]; 11 12 void pre() 13 { 14 int cnta=1,cntb=1; 15 a[1]=1;b[1]=1;b[2]=2; 16 for(cnta=2,cntb=1;cnta<maxn&&cntb<maxn;cnta++) 17 { 18 a[cnta]=b[cnta]; 19 if(a[cnta]==1) 20 { 21 if(b[cntb]==1) 22 { 23 b[cntb+1]=2; 24 } 25 else 26 { 27 b[cntb+1]=1; 28 } 29 cntb++; 30 } 31 else 32 { 33 if(b[cntb]==1) 34 { 35 b[cntb+1]=2; 36 b[cntb+2]=2; 37 } 38 else 39 { 40 b[cntb+1]=1; 41 b[cntb+2]=1; 42 } 43 cntb+=2; 44 } 45 } 46 } 47 48 int main() 49 { 50 pre(); 51 int T,n; 52 scanf("%d",&T); 53 while(T--) 54 { 55 scanf("%d",&n); 56 printf("%d ",b[n]); 57 } 58 return 0; 59 }