zoukankan      html  css  js  c++  java
  • Codeforces 832D(Misha, Grisha and Underground,LCA)

    题意:在一棵生成树上,给出了三个点,求三个点之间最大的相交点数,CF难度1900。

    题解:求出三个lca,并取深度最大的那个,就是我们要的三岔路口K,然后分别求出K到a,b,c三点的路径长度,取最大值+1就是答案。为什么是取深度最大的呢?因为只有当深度是最大的时候设该点为K,这个K为三岔路口,每一个a,b,c到K的距离都不会用重复,否则如果取的不是最深的,可能造成重复的情况,这个需要避免。然后找到这个K之后,ans就是a,b,c三点分别到K的距离+1即可(+1是因为本身也算)。

    一开始没做出来的原因:不知道如何找这个岔口....以为需要把岔口当做root来弄,然后就需要一次又一次的重复更新建立LCA表,就很麻烦。其实求岔口只需要以1作为root,然后a,b,c三个点两两求LCA然后取深度最大的LCA就行了....树上每2个点的距离dis(u,v)=depth[u]+depth[v]-2*depth(LCA(u,v)],好吧是我菜了

    #include<bits/stdc++.h>
    #define ll long long
    #define rep(i,a,n) for(int i=a;i<=n;i++)
    #define per(i,n,a) for(int i=n;i>=a;i--)
    #define endl '
    '
    #define mem(a,b) memset(a,b,sizeof(a))
    #define IO ios::sync_with_stdio(false);cin.tie(0);
    using namespace std;
    const int INF=0x3f3f3f3f;
    const ll inf=0x3f3f3f3f3f3f3f3f;
    const int mod=1e9+7;
    const int maxn=1e5+5;
    int tot,head[maxn];
    struct E{
        int to,next;
    }edge[maxn<<1];
    void add(int u,int v){
        edge[tot].to=v;
        edge[tot].next=head[u];
        head[u]=tot++;
    }
    int n,m,a[maxn],fa[maxn][40],depth[maxn],vis[maxn];
    void dfs(int s,int step){
        depth[s]=step;vis[s]=1;
        for(int i=head[s];i!=-1;i=edge[i].next){
            int v=edge[i].to;
            if(!vis[v]) fa[v][0]=s,dfs(v,step+1);
        }
    }
    void bz(){
        for(ll j=1;j<=30;j++){
            for(ll i=1;i<=n;i++){
                fa[i][j]=fa[fa[i][j-1]][j-1];
            }
        }
    }
    ll LCA(ll u,ll v){
        if(depth[u]<depth[v]) swap(u,v);
        ll dc=depth[u]-depth[v];
        for(ll i=0;i<30;i++){
            if((1<<i)&dc){
                u=fa[u][i];
            }
        }
        if(u==v) return u;
        for(ll i=29;i>=0;i--){
            if(fa[u][i]!=fa[v][i]){
                u=fa[u][i];
                v=fa[v][i];
            }
        }
        u=fa[u][0];
        return u;
    }
    int dis(int u,int v){
        return depth[u]+depth[v]-2*depth[LCA(u,v)];
    }
    int main(){
        scanf("%d%d",&n,&m);mem(head,-1);
        for(int i=2;i<=n;i++){
            int x;scanf("%d",&x);
            add(i,x);add(x,i);
        }    
        dfs(1,1);
        bz();
        while(m--){
            int a,b,c;scanf("%d%d%d",&a,&b,&c);
            int l1=LCA(a,b);
            int l2=LCA(a,c);
            int l3=LCA(b,c);
            if(depth[l2]>depth[l1]) l1=l2; 
            if(depth[l3]>depth[l1]) l1=l3;
            cout<<max(dis(l1,a),max(dis(l1,b),dis(l1,c)))+1<<endl; 
        }
    }
    View Code
  • 相关阅读:
    java核心技术卷上学习笔记
    个人作业——软件工程实践总结作业
    个人作业——软件产品案例分析
    软件工程作业-结对编程 2.0
    软件工程作业-结对编程 1.0
    软件工程作业2.0
    软件工程作业1.0
    《面向对象程序设计》c++第六次作业___calculator SE
    面向对象程序设计作业 6.1~6.4
    面向对象程序设计作业 5.1~5.5
  • 原文地址:https://www.cnblogs.com/Anonytt/p/12905335.html
Copyright © 2011-2022 走看看